Aims. Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods. MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results. Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and
Bone metastasis ultimately occurs due to a complex multistep process, during which the interactions between cancer cells and bone microenvironment play important roles. Prior to colonization of the bone, cancer cells must succeed through a series of steps that will allow them to gain migratory and invasive properties; epithelial-to-mesenchymal transition (EMT) is known to be integral here. The aim of this study was to determine the effects of G protein subunit alpha Q (GNAQ) on the mechanisms underlying bone metastasis through EMT pathway. A total of 80 tissue samples from patients who were surgically treated during January 2012 to December 2014 were used in the present study. Comparative gene analysis revealed that the GNAQ was more frequently altered in metastatic bone lesions than in primary tumour sites in lung cancer patients. We investigated the effects of GNAQ on cell proliferation, migration, EMT, and stem cell transformation using lung cancer cells with GNAQ-knockdown. A xenograft mouse model tested the effect of GNAQ using micro-CT analyses and histological analyses.Aims
Methods
Tocilizumab, an interleukin-6 (IL-6) receptor (IL-6R) targeting antibody, enhances the anti-tumour effect of conventional chemotherapy in preclinical models of cancer. We investigated the anti-tumour effect of tocilizumab in osteosarcoma (OS) cell lines. We used the 143B, HOS, and Saos-2 human OS cell lines. We first analyzed the IL-6 gene expression and IL-6Rα protein expression in OS cells using reverse transcription real time quantitative-polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. We also assessed the effect of tocilizumab on OS cells using proliferation and invasion assay.Aims
Methods