header advert
Results 1 - 5 of 5
Results per page:
Bone & Joint Open
Vol. 3, Issue 4 | Pages 302 - 306
4 Apr 2022
Mayne AIW Cassidy RS Magill P Mockford BJ Acton DA McAlinden MG

Aims. Waiting times for arthroplasty surgery in Northern Ireland are among the longest in the NHS, which have been further lengthened by the onset of the COVID-19 global pandemic in March 2020. The Department of Health in Northern Ireland has announced a new Elective Care Framework (ECF), with the framework proposing that by March 2026 no patient will wait more than 52 weeks for inpatient/day case treatment. We aimed to assess the feasibility of achieving this with reference to total hip arthroplasty (THA) and total knee arthroplasty (TKA). Methods. Mathematical modelling was undertaken to calculate when the ECF targets will be achieved for THA and TKA, as well as the time when waiting lists for THA and TKA will be cleared. The number of patients currently on the waiting list and percentage operating capacity relative to pre-COVID-19 capacity was used to determine future projections. Results. As of May 2021, there were 3,757 patients awaiting primary THA and 4,469 patients awaiting primary TKA in Northern Ireland. Prior to April 2020, there were a mean 2,346 (2,085 to 2,610) patients per annum boarded for primary THA, a mean 2,514 (2,494 to 2,514) patients per annum boarded for primary TKA, and there were a mean 1,554 primary THAs and 1,518 primary TKAs performed per annum. The ECF targets for THA will only be achieved in 2030 if operating capacity is 200% of pre COVID-19 pandemic capacity and in 2042 if capacity is 170%. For TKA, the targets will be met in 2034 if capacity is 200% of pre-COVID-19 pandemic capacity. Conclusion. This modelling demonstrates that, in the absence of major funding and reorganization of elective orthopaedic care, the targets set out in the ECF will not be achieved with regard to THA and TKA. Waiting times for THA and TKA surgery in Northern Ireland are likely to remain greater than 52 weeks for most of this decade. Cite this article: Bone Jt Open 2022;3(4):302–306


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1076 - 1081
1 Aug 2015
Patel A Pavlou G Mújica-Mota RE Toms AD

Total knee arthroplasty (TKA) and total hip arthroplasty (THA) are recognised and proven interventions for patients with advanced arthritis. Studies to date have demonstrated a steady increase in the requirement for primary and revision procedures. Projected estimates made for the United States show that by 2030 the demand for primary TKA will grow by 673% and for revision TKA by 601% from the level in 2005. For THA the projected estimates are 174% and 137% for primary and revision surgery, respectively. The purpose of this study was to see if those predictions were similar for England and Wales using data from the National Joint Registry and the Office of National Statistics. . Analysis of data for England and Wales suggest that by 2030, the volume of primary and revision TKAs will have increased by 117% and 332%, respectively between 2012 and 2030. The data for the United States translates to a 306% cumulative rate of increase between 2012 and 2030 for revision surgery, which is similar to our predictions for England and Wales. . The predictions from the United States for primary TKA were similar to our upper limit projections. For THA, we predicted an increase of 134% and 31% for primary and revision hip surgery, respectively. Our model has limitations, however, it highlights the economic burden of arthroplasty in the future in England and Wales as a real and unaddressed problem. This will have significant implications for the provision of health care and the management of orthopaedic services in the future. Cite this article: Bone Joint J 2015;97-B:1076–1081


Bone & Joint Research
Vol. 5, Issue 7 | Pages 307 - 313
1 Jul 2016
Sandgren B Skorpil M Nowik P Olivecrona H Crafoord J Weidenhielm L Persson A

Objectives. Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. Materials and Methods. A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV. Results. We could assess wear and PAO while substantially lowering the effective radiation dose to 0.7 mSv for a total pelvic view with an accuracy of around 0.5 mm for linear wear and 2 mm to 3 mm for PAO. Conclusion. CT for detection of prosthetic wear and PAO could be used with clinically acceptable accuracy at a radiation exposure level equal to plain radiographic exposures. Cite this article: B. Sandgren, M. Skorpil, P. Nowik, H. Olivecrona, J. Crafoord, L. Weidenhielm, A. Persson. Assessment of wear and periacetabular osteolysis using dual energy computed tomography on a pig cadaver to identify the lowest acceptable radiation dose. Bone Joint Res 2016;5:307–313. DOI: 10.1302/2046-3758.57.2000566


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 130 - 135
1 Jan 2010
Culliford DJ Maskell J Beard DJ Murray DW Price AJ Arden NK

Using the General Practice Research Database, we examined the temporal changes in the rates of primary total hip (THR) and total knee (TKR) replacement, the age at operation and the female-to-male ratio between 1991 and 2006 in the United Kingdom.

We identified 27 113 patients with THR and 23 843 with TKR. The rate of performance of THR and TKR had increased significantly (p < 0.0001 for both) during the 16-year period and was greater for TKR, especially in the last five years. The mean age at operation was greater for women than for men and had remained stable throughout the period of study. The female-to-male ratio was higher for THR and TKR and had remained stable.

The data support the notion that the rate of joint replacement is increasing in the United Kingdom with the rate of TKR rising at the highest rate. The perception that the mean age for TKR has decreased over time is not supported.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 136 - 141
1 Jan 2010
Franken M Grimm B Heyligers I

We have investigated the accuracy of the templating of digital radiographs in planning total hip replacement using two common object-based calibration methods with the ball placed laterally (method 1) or medially (method 2) and compared them with two non-object-based methods. The latter comprised the application of a fixed magnification of 121% (method 3) and calculation of magnification based on the object-film-distance (method 4). We studied the post-operative radiographs of 57 patients (19 men, 38 women, mean age 73 years (53 to 89)) using the measured diameter of the prosthetic femoral head and comparing it with the true value.

Both object-based methods (1 and 2) produced large errors (mean/maximum: 2.55%/17.4% and 2.04%/6.46%, respectively). Method 3 applying a fixed magnification and method 4 (object-film-distance) produced smaller errors (mean/maximum 1.42%/5.22% and 1.57%/4.24%, respectively; p < 0.01). The latter results were clinically relevant and acceptable when planning was allowed to within one implant size. Object-based calibration (methods 1 and 2) has fundamental problems with the correct placement of the calibration ball. The accuracy of the fixed magnification (method 3) matched that of object-film-distance (method 4) and was the most reliable and efficient calibration method in digital templating.