Osteoarthritis results in changes in the dimensions
of the glenoid. This study aimed to assess the size and radius of curvature
of arthritic glenoids. A total of 145 CT scans were analysed, performed
as part of routine pre-operative assessment before total shoulder
replacement in 91 women and 54 men. Only patients with primary osteoarthritis and
a concentric glenoid were included in the study. The CT scans underwent
three-dimensional (3D) reconstruction and were analysed using dedicated
computer software. The measurements consisted of maximum superoinferior height,
anteroposterior width and a best-fit sphere radius of curvature
of the glenoid. The mean height was 40.2 mm ( With current shoulder replacement systems using a unique backside
radius of curvature for the glenoid component, there is a risk of
undertaking excessive reaming to adapt the bone to the component
resulting in sacrifice of subchondral bone or under-reaming and
instability of the component due to a ’rocking horse‘ phenomenon. Cite this article:
Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner.Aims
Methods
The aim of this study was to compare the clinical and radiological outcomes of reverse shoulder arthroplasty (RSA) using small and standard baseplates in Asian patients, and to investigate the impact of a mismatch in the sizes of the glenoid and the baseplate on the outcomes. This was retrospective analysis of 50 and 33 RSAs using a standard (33.8 mm, ST group) and a small (29.5 mm, SM group) baseplate of the Equinoxe reverse shoulder system, which were undertaken between January 2017 and March 2021. Radiological evaluations included the size of the glenoid, the Aims
Methods
Existing literature indicates that inferiorly inclined glenoid baseplates following reverse total shoulder arthroplasty (RSA) produce better outcomes compared to superiorly inclined baseplates. We aim to compare clinical outcomes for RSAs with superiorly and neutrally/inferiorly inclined lateralized glenospheres. We retrospectively reviewed 154 consecutive patients undergoing RSA between July 2015 and July 2017 by one single-fellowship trained surgeon (AJ). Two raters (KAM and MVS) independently measured glenoid inclination in preoperative and minimum two year follow-up radiographs (anteroposterior/Grashey) using the RSA angle. Inclination was then compared to patient-reported outcomes, range of motion (ROM), and independently assessed degree of scapular notching and staging of heterotopic ossification at two year follow-up.Aims
Methods
Aims
Patients and Methods