Injury to the sciatic nerve is one of the more serious complications of acetabular fracture and traumatic dislocation of the hip, both in the short and long term. We have reviewed prospectively patients, treated in our unit, for acetabular fractures who had concomitant injury to the sciatic nerve, with the aim of predicting the functional outcome after these injuries. Of 136 patients who underwent stabilisation of acetabular fractures, there were 27 (19.9%) with neurological injury. At initial presentation, 13 patients had a complete foot-drop, ten had weakness of the foot and four had burning pain and altered sensation over the dorsum of the foot. Serial electromyography (EMG) studies were performed and the degree of functional recovery was monitored using the grading system of the Medical Research Council. In nine patients with a foot-drop, there was evidence of a proximal acetabular (sciatic) and a distal knee (neck of fibula) nerve lesion, the double-crush syndrome. At the final follow-up, clinical examination and EMG studies showed full recovery in five of the ten patients with initial muscle weakness, and complete resolution in all four patients with sensory symptoms (burning pain and hyperaesthesia). There was improvement of functional capacity (motor and sensory) in two patients who presented initially with complete foot-drop. In the remaining 11 with foot-drop at presentation, including all nine with the double-crush lesion, there was no improvement in function at a mean follow-up of 4.3 years.
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article: