A common situation presenting to the orthopaedic
surgeon today is a worn acetabular liner with substantial acetabular
and pelvic osteolysis. The surgeon has many options for dealing
with osteolytic defects. These include allograft, calcium based
substitutes, demineralised bone matrix, or combinations of these
options with or without addition of platelet rich plasma. To date
there are no clinical studies to determine the efficacy of using
bone-stimulating materials in osteolytic defects at the time of
revision surgery and there are surprisingly few studies demonstrating
the clinical efficacy of these treatment options. Even when radiographs
appear to demonstrate incorporation of graft material CT studies
have shown that incorporation is incomplete. The surgeon, in choosing
a graft material for a surgical procedure must take into account
the efficacy, safety, cost and convenience of that material. Cite this article:
The clinical and radiological results of 50 consecutive acetabular reconstructions in 48 patients using impaction grafting have been retrospectively reviewed. A 1:1 mixture of frozen, ground irradiated bone graft and Apapore 60, a synthetic bone graft substitute, was used in all cases. There were 13 complex primary and 37 revision procedures with a mean follow-up of five years (3.4 to 7.6). The clinical survival rate was 100%, with improvements in the mean Harris Hip Scores for pain and function. Radiologically, 30 acetabular grafts showed evidence of incorporation, ten had radiolucent lines and two acetabular components migrated initially before stabilising. Acetabular reconstruction in both primary and revision surgery using a 1:1 mixture of frozen, ground, irriadiated bone and Apapore 60 appears to be a reliable method of managing acetabular defects. Longer follow-up will be required to establish whether this technique is as effective as using fresh-frozen allograft.
Objectives. Fractures of the proximal femur are a common clinical problem, and a number of orthopaedic devices are available for the treatment of such fractures. The objective of this study was to assess the rotational stability, a common failure predictor, of three different rotational control design philosophies: a screw, a helical blade and a deployable crucifix. Methods. Devices were compared in terms of the mechanical work (W) required to rotate the implant by 6° in a
Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods.Aims
Methods
Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative technology used during THA is limited. The aims of this study were to: 1) examine whether the use of enabling technologies during THA results in a smaller proportion of wasted implants compared to navigation-guided and conventional manual THA; 2) determine the proportion of wasted implants by implant type; and 3) examine the effects of surgeon experience on rates of implant waste by technology used. We identified 104,420 implants either implanted or wasted during 18,329 primary THAs performed on 16,724 patients between January 2018 and June 2022 at our institution. THAs were separated by technology used: robotic-assisted (n = 4,171), imageless navigation (n = 6,887), and manual (n = 7,721). The primary outcome of interest was the rate of implant waste during primary THA.Aims
Methods
The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.Aims
Methods
Glass ionomer cement (Ionocem) was developed for use in bone surgery and is reported to be notably biocompatible. Between 1991 and 1994 we performed revision operations for aseptic loosening of arthroplasties of the hip on 45 patients using this material in its granulate form (Ionogran) mixed with homologous bone as a
Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component? A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.Aims
Methods
Using a simple classification method, we aimed to estimate the collapse rate due to osteonecrosis of the femoral head (ONFH) in order to develop treatment guidelines for joint-preserving surgeries. We retrospectively analyzed 505 hips from 310 patients (141 men, 169 women; mean age 45.5 years Objectives
Methods
Femoral impaction bone grafting was first developed in 1987 using
morselised cancellous bone graft impacted into the femoral canal
in combination with a cemented, tapered, polished stem. We describe
the evolution of this technique and instrumentation since that time. Between 1987 and 2005, 705 revision total hip arthroplasties
(56 bilateral) were performed with femoral impaction grafting using
a cemented femoral stem. All surviving patients were prospectively
followed for a mean of 14.7 years (9.8 to 28.3) with no loss to
follow-up. By the time of the final review, 404 patients had died.Aims
Patients and Methods
The ‘jumbo’ acetabular component is now commonly
used in acetabular revision surgery where there is extensive bone
loss. It offers high surface contact, permits weight bearing over
a large area of the pelvis, the need for bone grafting is reduced
and it is usually possible to restore centre of rotation of the
hip. Disadvantages of its use include a technique in which bone
structure may not be restored, a risk of excessive posterior bone
loss during reaming, an obligation to employ screw fixation, limited
bone ingrowth with late failure and high hip centre, leading to increased
risk of dislocation. Contraindications include unaddressed pelvic
dissociation, inability to implant the component with a rim fit,
and an inability to achieve screw fixation. Use in acetabulae with
<
50% bone stock has also been questioned. Published results
have been encouraging in the first decade, with late failures predominantly because
of polyethylene wear and aseptic loosening. Dislocation is the most
common complication of jumbo acetabular revisions, with an incidence
of approximately 10%, and often mandates revision. Based on published results,
a hemispherical component with an enhanced porous coating, highly
cross-linked polyethylene, and a large femoral head appears to represent
the optimum tribology for jumbo acetabular revisions. Cite this article:
The increasing need for total hip replacement
(THR) in an ageing population will inevitably generate a larger number
of revision procedures. The difficulties encountered in dealing
with the bone deficient acetabulum are amongst the greatest challenges
in hip surgery. The failed acetabular component requires reconstruction
to restore the hip centre and improve joint biomechanics. Impaction
bone grafting is successful in achieving acetabular reconstruction
using both cemented and cementless techniques. Bone graft incorporation
restores bone stock whilst providing good component stability. We
provide a summary of the evidence and current literature regarding impaction
bone grafting using both cemented and cementless techniques in revision
THR. Cite this article:
The long-term results of grafting with hydroxyapatite granules for acetabular deficiency in revision total hip replacement are not well known. We have evaluated the results of revision using a modular cup with hydroxyapatite grafting for Paprosky type 2 and 3 acetabular defects at a minimum of ten years’ follow-up. We retrospectively reviewed 49 acetabular revisions at a mean of 135 months (120 to 178). There was one type 2B, ten 2C, 28 3A and ten 3B hips. With loosening as the endpoint, the survival rate was 74.2% (95% confidence interval 58.3 to 90.1). Radiologically, four of the type 3A hips (14%) and six of the type 3B hips (60%) showed aseptic loosening with collapse of the hydroxyapatite layer, whereas no loosening occurred in type 2 hips. There was consolidation of the hydroxyapatite layer in 33 hips (66%). Loosening was detected in nine of 29 hips (31%) without cement and in one of 20 hips (5%) with cement (p = 0.03, Fisher’s exact probability test). The linear wear and annual wear rate did not correlate with loosening. These results suggest that the long-term results of hydroxyapatite grafting with cement for type 2 and 3A hips are encouraging.
In revision total hip replacement, bone loss can be managed by impacting porous bone chips. In order to guarantee sufficient mechanical strength, the bone chips have to be compacted. The aim of this study was to determine in an We found that the pneumatic method reached higher values of impaction hardness, contact stiffness and bulk density suggesting an increase in stability of the implant. No significant differences were found between the two different methods concerning the penetration resistance. The pneumatic method might reduce the risk of fracture
We biomechanically investigated whether the standard dynamic hip screw (DHS) or the DHS blade achieves better fixation in bone with regard to resistance to pushout, pullout and torsional stability. The experiments were undertaken in an artificial bone substrate in the form of polyurethane foam blocks with predefined mechanical properties. Pushout tests were also repeated in cadaveric femoral heads. The results showed that the DHS blade outperformed the DHS with regard to the two most important characteristics of implant fixation, namely resistance to pushout and rotational stability. We concluded that the DHS blade was the superior implant in this study.