The aim of this study was to assess the effect
of frictional torque and bending moment on fretting corrosion at
the taper interface of a modular femoral component and to investigate
whether different combinations of material also had an effect. The
combinations we examined were 1) cobalt–chromium (CoCr) heads on
CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic
heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem
in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and
8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14
Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending
moment by offsetting the application of axial load from the midline
in the mediolateral plane. Increments of offset equivalent to head
+ 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing
torque for all combinations of material. However, Ti stems showed
the highest corrosion currents. Increased bending moments associated
with using larger offset heads produced more corrosion: Ti stems
generally performed worse than CoCr stems. Using ceramic heads did
not prevent corrosion, but reduced it significantly in all loading
configurations. Cite this article: