Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are. The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O’Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy.Aims
Methods
Using general practitioner records and hospital
notes and through direct telephone conversation with patients, we investigated
the accuracy of nine patient-reported complications gathered from
a self-completed questionnaire after elective joint replacement
surgery of the hip and knee. A total of 402 post-discharge complications
were reported after 8546 elective operations that were undertaken
within a three-year period. These were reported by 136 men and 240
women with a mean age of 71.8 years (34 to 93). A total of 319 reported
complications (79.4%; 95% confidence interval 75.4 to 83.3) were
confirmed to be correct. High rates of correct reporting were demonstrated
for infection (94.5%) and the need for further surgery (100%), whereas
the rates of reporting deep-vein thrombosis (DVT), pulmonary embolism,
myocardial infarction and stroke were lower (75% to 84.2%). Dislocation,
peri-prosthetic fractures and nerve palsy had modest rates of correct
reporting (36% to 57.1%). More patients who had knee surgery delivered
incorrect reports of dislocation (p = 0.001) and DVT (p = 0.013). Despite these variations, it appears that post-operative complications
may form part of a larger patient-reported outcome programme after
elective joint replacement surgery.
We obtained information from the Elective Orthopaedic
Centre on 1523 patients with baseline and six-month Oxford hip scores
(OHS) after undergoing primary hip replacement (THR) and 1784 patients
with Oxford knee scores (OKS) for primary knee replacement (TKR)
who completed a six-month satisfaction questionnaire. Receiver operating characteristic curves identified an absolute
change in OHS of 14 points or more as the point that discriminates
best between patients’ satisfaction levels and an 11-point change
for the OKS. Satisfaction is highest (97.6%) in patients with an
absolute change in OHS of 14 points or more, compared with lower
levels of satisfaction (81.8%) below this threshold. Similarly,
an 11-point absolute change in OKS was associated with 95.4% satisfaction
compared with 76.5% below this threshold. For the six-month OHS
a score of 35 points or more distinguished patients with the highest
satisfaction level, and for the six-month OKS 30 points or more identified
the highest level of satisfaction. The thresholds varied according
to patients’ pre-operative score, where those with severe pre-operative
pain/function required a lower six-month score to achieve the highest
levels of satisfaction. Our data suggest that the choice of a six-month follow-up to
assess patient-reported outcomes of THR/TKR is acceptable. The thresholds
help to differentiate between patients with different levels of
satisfaction, but external validation will be required prior to
general implementation in clinical practice.
Tranexamic acid is a fibrinolytic inhibitor which reduces blood loss in total knee replacement. We examined the effect on blood loss of a standardised intravenous bolus dose of 1 g of tranexamic acid, given at the induction of anaesthesia in patients undergoing total hip replacement and tested the potential prothrombotic effect by undertaking routine venography. In all, 36 patients received 1 g of tranexamic acid, and 37 no tranexamic acid. Blood loss was measured directly per-operatively and indirectly post-operatively. Tranexamic acid reduced the early post-operative blood loss and total blood loss (p = 0.03 and p = 0.008, respectively) but not the intraoperative blood loss. The tranexamic acid group required fewer transfusions (p = 0.03) and had no increased incidence of deep-vein thrombosis. The reduction in early post-operative blood loss was more marked in women (p = 0.05), in whom this effect was dose-related (r = −0.793). Our study showed that the administration of a standardised pre-operative bolus of 1 g of tranexamic acid was cost-effective in reducing the blood loss and transfusion requirements after total hip replacement, especially in women.
We audited the relationship between obesity and the age at which hip and knee replacement was undertaken at our centre. The database was analysed for age, the Oxford hip or knee score and the body mass index (BMI) at the time of surgery. In total, 1369 patients were studied, 1025 treated by hip replacement and 344 by knee replacement. The patients were divided into five groups based on their BMI (normal, overweight, moderately obese, severely obese and morbidly obese). The difference in the mean Oxford score at surgery was not statistically significant between the groups (p >
0.05). For those undergoing hip replacement, the mean age of the morbidly obese patients was ten years less than that of those with a normal BMI. For those treated by knee replacement, the difference was 13 years. The age at surgery fell significantly for those with a BMI >
35 kg/m2 for both hip and knee replacement (p >
0.05). This association was stronger for patients treated by knee than by hip replacement.