Advertisement for orthosearch.org.uk
Results 1 - 20 of 83
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1339 - 1347
1 Oct 2013
Scott CEH Eaton MJ Nutton RW Wade FA Pankaj P Evans SL

As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves (‘hits’) produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint. . Cite this article: Bone Joint J 2013;95-B:1339–47


Bone & Joint Research
Vol. 7, Issue 2 | Pages 166 - 172
1 Feb 2018
Bujnowski K Getgood A Leitch K Farr J Dunning C Burkhart TA

Aim. It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. Materials and Methods. A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N. Results. There was no significant difference in the strains on the lateral cortex during HTO opening between the pilot hole and no-hole conditions. Similarly, the lateral cortex and fixation plate strains were not significantly different during cyclic loading between the two conditions. Using a pilot hole did not significantly decrease the strains experienced at the lateral cortex, nor did it reduce the risk of fracture. Conclusions. The nonsignificant differences found here most likely occurred because the pilot hole merely translated the stress concentration laterally to a parallel point on the surface of the hole. Cite this article: K. Bujnowski, A. Getgood, K. Leitch, J. Farr, C. Dunning, T. A. Burkhart. A pilot hole does not reduce the strains or risk of fracture to the lateral cortex during and following a medial opening wedge high tibial osteotomy in cadaveric specimens. Bone Joint Res 2018;7:166–172. DOI: 10.1302/2046-3758.72.BJR-2017-0337.R1


Bone & Joint Research
Vol. 11, Issue 8 | Pages 575 - 584
17 Aug 2022
Stoddart JC Garner A Tuncer M Cobb JP van Arkel RJ

Aims. The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Methods. Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95. th. percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone. Results. Peak tensile strains occurred on the anterior portion of the medial sagittal cut in all simulations. Lateral translation of the medial implant in Bi-UKA had the largest increase in ROF of any of the implant positions (43%). Overstuffing the joint by 2 mm had a much larger effect, resulting in a six-fold increase in ROF. Bi-UKA had ~10% increased ROF compared to UKA-M for both the male and female models, although the smaller, less dense female model had a 1.4 times greater ROF compared to the male model. Removal of anterior bone akin to BCR-TKA doubled ROF compared to Bi-UKA. Conclusion. Tibial eminence avulsion fracture has a similar risk associated with Bi-UKA to UKA-M. The risk is higher for smaller and less dense tibiae. To minimize risk, it is most important to avoid overstuffing the joint, followed by correctly positioning the medial implant, taking care not to narrow the bone island anteriorly. Cite this article: Bone Joint Res 2022;11(8):575–584


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. Methods. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical environment of the native tibia for both UKA and TKA designs. Maximum stress at the bone-implant interface ranged from 1.2 MPa to 3.3 MPa compared with 1.3 MPa to 2.7 MPa for the native tibia. The conventional solid UKA and TKA implants reduced the maximum stress in the bone by a factor of 10 and caused > 70% of bone surface area to be underloaded compared to the native tibia. Conclusion. Titanium lattice implants maintained the natural mechanical loading in the proximal tibia after UKA and TKA, but conventional solid implants did not. This is an exciting first step towards implants that maintain bone health, but such implants also have to meet fatigue and micromotion criteria to be clinically viable. Cite this article: Bone Joint Res 2022;11(2):91–101


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives. Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). Materials and Methods. A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Results. Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R. 2. = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R. 2. = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. Conclusion. AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection. Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model. Bone Joint Res 2017;6:22–30. DOI:10.1302/2046-3758.61.BJR-2016-0142.R1


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 171 - 176
1 Jun 2021
Klasan A Schermuksnies A Gerber F Bowman M Fuchs-Winkelmann S Heyse TJ

Aims. The management of periprosthetic joint infection (PJI) after total knee arthroplasty (TKA) is challenging. The correct antibiotic management remains elusive due to differences in epidemiology and resistance between countries, and reports in the literature. Before the efficacy of surgical treatment is investigated, it is crucial to analyze the bacterial strains causing PJI, especially for patients in whom no organisms are grown. Methods. A review of all revision TKAs which were undertaken between 2006 and 2018 in a tertiary referral centre was performed, including all those meeting the consensus criteria for PJI, in which organisms were identified. Using a cluster analysis, three chronological time periods were created. We then evaluated the antibiotic resistance of the identified bacteria between these three clusters and the effectiveness of our antibiotic regime. Results. We identified 129 PJIs with 161 culture identified bacteria in 97 patients. Coagulase-negative staphylococci (CNS) were identified in 46.6% cultures, followed by Staphylococcus aureus in 19.8%. The overall resistance to antibiotics did not increase significantly during the study period (p = 0.454). However, CNS resistance to teicoplanin (p < 0.001), fosfomycin (p = 0.016), and tetracycline (p = 0.014) increased significantly. Vancomycin had an 84.4% overall sensitivity and 100% CNS sensitivity and was the most effective agent. Conclusion. Although we were unable to show an overall increase in antibiotic resistance in organisms that cause PJI after TKA during the study period, this was not true for CNS. It is concerning that resistance of CNS to new antibiotics, but not vancomycin, has increased in a little more than a decade. Our findings suggest that referral centres should continuously monitor their bacteriological analyses, as these have significant implications for prophylactic treatment in both primary arthroplasty and revision arthroplasty for PJI. Cite this article: Bone Joint J 2021;103-B(6 Supple A):171–176


Bone & Joint Research
Vol. 6, Issue 1 | Pages 43 - 51
1 Jan 2017
Nakamura S Tian Y Tanaka Y Kuriyama S Ito H Furu M Matsuda S

Objectives. Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Materials and Methods. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis. Results. In all bone models, posterior translation on the lateral side and external rotation in the KA TKA models were greater than in the MA TKA models. The tibiofemoral force at the medial side was increased in the moderate and severe varus models with KA TKA. In the severe varus model with KA TKA, the contact stress on the tibial insert and the stress to the resection surface and to the medial tibial cortex were increased by 41.5%, 32.2% and 53.7%, respectively, compared with MA TKA, and the bone strain at the medial side was highest among all models. Conclusion. Near normal kinematics was observed in KA TKA. However, KA TKA increased the contact force, stress and bone strain at the medial side for moderate and severe varus knee models. The application of KA TKA for severe varus knees may be inadequate. Cite this article: S. Nakamura, Y. Tian, Y. Tanaka, S. Kuriyama, H. Ito, M. Furu, S. Matsuda. The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia: A case study for varus knee. Bone Joint Res 2017;6:43–51. DOI: 10.1302/2046-3758.61.BJR-2016-0090.R1


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


Aims

The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness.

Methods

A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1003 - 1012
8 Nov 2024
Gabr A Fontalis A Robinson J Hage W O'Leary S Spalding T Haddad FS

Aims

The aim of this study was to compare patient-reported outcomes (PROMs) following isolated anterior cruciate ligament reconstruction (ACLR), with those following ACLR and concomitant meniscal resection or repair.

Methods

We reviewed prospectively collected data from the UK National Ligament Registry for patients who underwent primary ACLR between January 2013 and December 2022. Patients were categorized into five groups: isolated ACLR, ACLR with medial meniscus (MM) repair, ACLR with MM resection, ACLR with lateral meniscus (LM) repair, and ACLR with LM resection. Linear regression analysis, with isolated ACLR as the reference, was performed after adjusting for confounders.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims

A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting.

Methods

This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims

The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?

Methods

A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 34 - 44
1 Jan 2022
Beckers L Dandois F Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs.

Methods

In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 51 - 58
1 Jun 2021
Yang J Heckmann ND Nahhas CR Salzano MB Ruzich GP Jacobs JJ Paprosky WG Rosenberg AG Nam D

Aims

Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design.

Methods

All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship.


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1578 - 1585
1 Oct 2021
Abram SGF Sabah SA Alvand A Price AJ

Aims

To compare rates of serious adverse events in patients undergoing revision knee arthroplasty with consideration of the indication for revision (urgent versus elective indications), and compare these with primary arthroplasty and re-revision arthroplasty.

Methods

Patients undergoing primary knee arthroplasty were identified in the national Hospital Episode Statistics (HES) between 1 April 1997 to 31 March 2017. Subsequent revision and re-revision arthroplasty procedures in the same patients and same knee were identified. The primary outcome was 90-day mortality and a logistic regression model was used to investigate factors associated with 90-day mortality and secondary adverse outcomes, including infection (undergoing surgery), pulmonary embolism, myocardial infarction, and stroke. Urgent indications for revision arthroplasty were defined as infection or fracture, and all other indications (e.g. loosening, instability, wear) were included in the elective indications cohort.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 414 - 421
1 Jun 2021
Kim SK Nguyen C Avins AL Abrams GD

Aims

The aim of this study was to screen the entire genome for genetic markers associated with risk for anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) injury.

Methods

Genome-wide association (GWA) analyses were performed using data from the Kaiser Permanente Research Board (KPRB) and the UK Biobank. ACL and PCL injury cases were identified based on electronic health records from KPRB and the UK Biobank. GWA analyses from both cohorts were tested for ACL and PCL injury using a logistic regression model adjusting for sex, height, weight, age at enrolment, and race/ethnicity using allele counts for single nucleotide polymorphisms (SNPs). The data from the two GWA studies were combined in a meta-analysis. Candidate genes previously reported to show an association with ACL injury in athletes were also tested for association from the meta-analysis data from the KPRB and the UK Biobank GWA studies.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims

Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology.

Methods

This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).