To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.Aims
Methods
Vertebral compression fractures are the most prevalent complication of osteoporosis and percutaneous vertebroplasty (PVP) has emerged as a promising addition to the methods of treating the debilitating pain they may cause. Since PVP was first reported in the literature in 1987, more than 600 clinical papers have been published on the subject. Most report excellent improvements in pain relief and quality of life. However, these papers have been based mostly on uncontrolled cohort studies with a wide variety of inclusion and exclusion criteria. In 2009, two high-profile randomised controlled trials were published in the