Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 972 - 976
1 Jul 2013
Chang KC Samartzis D Fuego SM Dhatt SS Wong YW Cheung WY Luk KDK Cheung KMC

Transarticular screw fixation with autograft is an established procedure for the surgical treatment of atlantoaxial instability. Removal of the posterior arch of C1 may affect the rate of fusion. This study assessed the rate of atlantoaxial fusion using transarticular screws with or without removal of the posterior arch of C1. We reviewed 30 consecutive patients who underwent atlantoaxial fusion with a minimum follow-up of two years. In 25 patients (group A) the posterior arch of C1 was not excised (group A) and in five it was (group B). Fusion was assessed on static and dynamic radiographs. In selected patients CT imaging was also used to assess fusion and the position of the screws. There were 15 men and 15 women with a mean age of 51.2 years (23 to 77) and a mean follow-up of 7.7 years (2 to 11.6). Stable union with a solid fusion or a stable fibrous union was achieved in 29 patients (97%). In Group A, 20 patients (80%) achieved a solid fusion, four (16%) a stable fibrous union and one (4%) a nonunion. In Group B, stable union was achieved in all patients, three having a solid fusion and two a stable fibrous union. There was no statistically significant difference between the status of fusion in the two groups. Complications were noted in 12 patients (40%); these were mainly related to the screws, and included malpositioning and breakage. The presence of an intact or removed posterior arch of C1 did not affect the rate of fusion in patients with atlantoaxial instability undergoing C1/C2 fusion using transarticular screws and autograft.

Cite this article: Bone Joint J 2013;95-B:972–6.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 217 - 223
1 Feb 2013
Hwang CJ Lee JH Baek H Chang B Lee C

We evaluated the efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E-BMP-2) in a mini-pig model of spinal anterior interbody fusion. A total of 14 male mini-pigs underwent three-level anterior lumbar interbody fusion using polyether etherketone (PEEK) cages containing porous hydroxyapatite (HA). Four groups of cages were prepared: 1) control (n = 10 segments); 2) 50 μg E-BMP-2 (n = 9); 3) 200 μg E-BMP-2 (n = 10); and 4) 800 μg E-BMP-2 (n = 9). At eight weeks after surgery the mini-pigs were killed and the specimens were evaluated by gross inspection and manual palpation, radiological evaluation including plain radiographs and micro-CT scans, and histological analysis. Rates of fusion within PEEK cages and overall union rates were calculated, and bone formation outside vertebrae was evaluated. One animal died post-operatively and was excluded, and one section was lost and also excluded, leaving 38 sites for assessment. This rate of fusion within cages was 30.0% (three of ten) in the control group, 44.4% (four of nine) in the 50 μg E-BMP-2 group, 60.0% (six of ten) in the 200 μg E-BMP-2 group, and 77.8% (seven of nine) in the 800 μg E-BMP-2 group. Fusion rate was significantly increased by the addition of E-BMP-2 and with increasing E-BMP-2 dose (p = 0.046). In a mini-pig spinal anterior interbody fusion model using porous HA as a carrier, the implantation of E-BMP-2-loaded PEEK cages improved the fusion rate compared with PEEK cages alone, an effect that was significantly increased with increasing E-BMP-2 dosage.

Cite this article: Bone Joint J 2013;95-B:217–23.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 961 - 966
1 Jul 2011
Park Y Kim J Ryu J Kim T

A number of causes have been advanced to explain the destructive discovertebral (Andersson) lesions that occur in ankylosing spondylitis, and various treatments have been proposed, depending on the presumed cause. The purpose of this study was to identify the causes of these lesions by defining their clinical and radiological characteristics.

We retrospectively reviewed 622 patients with ankylosing spondylitis. In all, 33 patients (5.3%) had these lesions, affecting 100 spinal segments. Inflammatory lesions were found in 91 segments of 24 patients (3.9%) and traumatic lesions in nine segments of nine patients (1.4%). The inflammatory lesions were associated with recent-onset disease; a low modified Stoke ankylosing spondylitis spine score (mSASSS) due to incomplete bony ankylosis between vertebral bodies; multiple lesions; inflammatory changes on MRI; reversal of the inflammatory changes and central bony ankylosis at follow-up; and a good response to anti-inflammatory drugs. Traumatic lesions were associated with prolonged disease duration; a high mSASSS due to complete bony ankylosis between vertebral bodies; a previous history of trauma; single lesions; nonunion of fractures of the posterior column; acute kyphoscoliotic deformity with the lesion at the apex; instability, and the need for operative treatment due to that instability.

It is essential to distinguish between inflammatory and traumatic Andersson lesions, as the former respond to medical treatment whereas the latter require surgery.