Distal femoral physeal fractures in children have a high incidence of physeal arrest, occurring in a mean of 40% of cases. The underlying nature of the distal femoral physis may be the primary cause, but other factors have been postulated to contribute to the formation of a physeal bar. The purpose of this study was to assess the significance of contributing factors to physeal bar formation, in particular the use of percutaneous pins across the physis. We reviewed 55 patients with a median age of ten years (3 to 13), who had sustained displaced distal femoral physeal fractures. Most (40 of 55) were treated with percutaneous pinning after reduction, four were treated with screws and 11 with plaster. A total of 40 patients were assessed clinically and radiologically after skeletal maturity or at the time of formation of a bar. The remaining 15 were followed up for a minimum of two years. Formation of a physeal bar occurred in 12 (21.8%) patients, with the rate rising to 30.6% in patients with high-energy injuries compared with 5.3% in those with low-energy injuries. There was a significant trend for physeal arrest according to increasing severity using the
Triplane ankle fractures are complex injuries typically occurring in children aged between 12 and 15 years. Classic teaching that closure of the physis dictates the overall fracture pattern, based on studies in the 1960s, has not been challenged. The aim of this paper is to analyze whether these injuries correlate with the advancing closure of the physis with age. A fracture mapping study was performed in 83 paediatric patients with a triplane ankle fracture treated in three trauma centres between January 2010 and June 2020. Patients aged younger than 18 years who had CT scans available were included. An independent Paediatric Orthopaedic Trauma Surgeon assessed all CT scans and classified the injuries as n-part triplane fractures. Qualitative analysis of the fracture pattern was performed using the modified Cole fracture mapping technique. The maps were assessed for both patterns and correlation with the closing of the physis until consensus was reached by a panel of six surgeons.Aims
Methods
McFarland fractures of the medial malleolus in
children, also classified as Salter–Harris Type III and IV fractures,
are associated with a high incidence of premature growth plate arrest.
In order to identify prognostic factors for the development of complications
we reviewed 20 children with a McFarland fracture that was treated
surgically, at a mean follow-up of 8.9 years (3.5 to 17.4). Seven
children (35%) developed premature growth arrest with angular deformity.
The mean American Orthopaedic Foot and Ankle Society Ankle-Hindfoot
Scale for all patients was 98.3 (87 to 100) and the mean modified
Weber protocol was 1.15 (0 to 5). There was a significant correlation
between initial displacement (p = 0.004) and operative delay (p
= 0.007) with premature growth arrest. Both risk factors act independently
and additively, such that all children with both risk factors developed
premature arrest whereas children with no risk factor did not. We
recommend that fractures of the medial malleolus in children should
be treated by anatomical reduction and screw fixation within one
day of injury. Cite this article:
Following the introduction of national standards in 2009, most
major paediatric trauma is now triaged to specialist units offering
combined orthopaedic and plastic surgical expertise. We investigated
the management of open tibia fractures at a paediatric trauma centre,
primarily reporting the risk of infection and rate of union. A retrospective review was performed on 61 children who between
2007 and 2015 presented with an open tibia fracture. Their mean
age was nine years (2 to 16) and the median follow-up was ten months
(interquartile range 5 to 18). Management involved IV antibiotics,
early debridement and combined treatment of the skeletal and soft-tissue injuries
in line with standards proposed by the British Orthopaedic Association.Aims
Patients and Methods
Fractures of the odontoid in children with an open basilar synchondrosis differ from those which occur in older children and adults. We have reviewed the morphology of these fractures and present a classification system for them. There were four distinct patterns of fracture (types IA to IC and type II) which were distinguished by the site of the fracture, the degree of displacement and the presence or absence of atlantoaxial dislocation. Children with a closed synchondrosis were classified using the system devised by Anderson and D’Alonzo. Those with an open synchondrosis had a comparatively lower incidence of traumatic brain injury, a higher rate of missed diagnosis and a shorter mean stay in hospital. Certain subtypes (type IA and type II) are likely to be missed on plain radiographs and therefore more advanced imaging is recommended. We suggest staged treatment with initial stabilisation in a Halo body jacket and early fusion for those with unstable injuries, severe displacement or neurological involvement.