We have reviewed the literature to establish the role of lateral retinacular
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the
Over the past 30 years there have been many improvements
in implant fixation, correction of deformity, improved polyethylene
wear, and survival after knee replacement. The work over the last
decade has focused on less invasive surgical techniques, multimodal
pain management protocols, more rapid functional recovery and reduced
length of stay, aiming to minimise the side effects of treatment
while maintaining function and implant durability. When combined
and standardised these pre-, intra- and post-operative factors have
now facilitated outpatient knee replacement procedures for unicompartmental
replacement, patella femoral arthroplasty and total knee replacement
(TKR). We have found liposomal bupivacaine, with potential for longer
therapeutic action, to be a helpful adjunct and describe our current
pain management program. The next step in our multimodal program
is to improve the duration of patient satisfaction and reduce cost
and length of stay after TKR. Cite this article:
Since 1996 more than one million metal-on-metal
articulations have been implanted worldwide. Adverse reactions to
metal debris are escalating. Here we present an algorithmic approach
to patient management. The general approach to all arthroplasty
patients returning for follow-up begins with a detailed history,
querying for pain, discomfort or compromise of function. Symptomatic
patients should be evaluated for intra-articular and extra-articular
causes of pain. In large head MoM arthroplasty, aseptic loosening
may be the source of pain and is frequently difficult to diagnose.
Sepsis should be ruled out as a source of pain. Plain radiographs
are evaluated to rule out loosening and osteolysis, and assess component
position. Laboratory evaluation commences with erythrocyte sedimentation
rate and C-reactive protein, which may be elevated. Serum metal
ions should be assessed by an approved facility. Aspiration, with
manual cell count and culture/sensitivity should be performed, with
cloudy to creamy fluid with predominance of monocytes often indicative
of failure. Imaging should include ultrasound or metal artifact
reduction sequence MRI, specifically evaluating for fluid collections
and/or masses about the hip. If adverse reaction to metal debris
is suspected then revision to metal or ceramic-on-polyethylene is indicated
and can be successful. Delay may be associated with extensive soft-tissue
damage and hence poor clinical outcome.
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.
The management of patients with a painful total knee replacement requires careful assessment and a stepwise approach in order to diagnose the underlying pathology accurately. The management should include a multidisciplinary approach to the patient’s pain as well as addressing the underlying aetiology. Pain should be treated with appropriate analgesia, according to the analgesic ladder of the World Health Organisation. Special measures should be taken to identify and to treat any neuropathic pain. There are a number of intrinsic and extrinsic causes of a painful knee replacement which should be identified and treated early. Patients with unexplained pain and without any recognised pathology should be treated conservatively since they may improve over a period of time and rarely do so after a revision operation.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
Talipes equinovarus is one of the more common congenital abnormalities affecting the lower limb and can be challenging to manage. This review provides a comprehensive update on idiopathic congenital talipes equinovarus with emphasis on the initial treatment. Current management is moving away from operative towards a more conservative treatment using the Ponseti regime. The long-term results of surgical correction and the recent results of conservative treatment will be discussed.
Chronic patellofemoral instability can be a disabling condition. Management of patients with this condition has improved owing to our increased knowledge of the functional anatomy of the patellofemoral joint. Accurate assessment of the underlying pathology in the unstable joint enables the formulation of appropriate treatment. The surgical technique employed in patients for whom non-operative management has failed should address the diagnosed abnormality. We have reviewed the literature on the stabilising features of the patellofemoral joint, the recommended investigations and the appropriate forms of treatment.
The advent of computer-assisted knee replacement surgery has focused interest on the alignment of the components. However, there is confusion at times between the alignment of the limb as a whole and that of the components. The interaction between them is discussed in this article. Alignment is expressed relative to some reference axis or plane and measurements will vary depending on what is selected as the reference. The validity of different reference axes is discussed. Varying prosthetic alignment has direct implications for surrounding soft-tissue tension. In this context the interaction between alignment and soft-tissue balance is explored and the current knowledge of the relationship between alignment and outcome is summarised.
Polymethylmethacrylate remains one of the most enduring materials in orthopaedic surgery. It has a central role in the success of total joint replacement and is also used in newer techniques such as percutaneous vertebroplasty and kyphoplasty. This article describes the current uses and limitations of polymethylmethacrylate in orthopaedic surgery. It focuses on its mechanical and chemical properties and links these to its clinical performance. The behaviour of antibiotic-loaded bone cement are discussed, together with areas of research that are now shedding light upon the behaviour of this unique biomaterial.
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate fracture healing must not be ignored.
Neurological conditions affecting the hip pose a considerable challenge in replacement surgery since poor and imbalanced muscle tone predisposes to dislocation and loosening. Consequently, total hip replacement (THR) is rarely performed in such patients. In a systematic review of the literature concerning THR in neurological conditions, we found only 13 studies which described the outcome. We have reviewed the evidence and discussed the technical challenges of this procedure in patients with cerebral palsy, Parkinson’s disease, poliomyelitis and following a cerebrovascular accident, spinal injury or development of a Charcot joint. Contrary to traditional perceptions, THR can give a good outcome in these often severly disabled patients.
Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.
Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
Technological advances and shorter rescue times have allowed early and effective resuscitation after trauma and brought attention to the host response to injury. Trauma patients are at risk of progressive organ dysfunction from what appears to be an uncontrolled immune response. The availability of improved techniques of molecular diagnosis has allowed investigation of the role of genetic variations in the inflammatory response to post-traumatic complications and particularly to sepsis. This review examines the current evidence for the genetic predisposition to adverse outcome after trauma. While there is evidence supporting the involvement of different polymorphic variants of genes in determining the post-traumatic course and the development of complications, larger-scale studies are needed to improve the understanding of how genetic variability influences the responses to post-traumatic complications and pharmacotherapy.