Aims. This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. Methods. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR
The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients. Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset.Aims
Methods
The incidence of bone metastases is between 20% to 75% depending on the type of cancer. As treatment improves, the number of patients who need surgical intervention is increasing. Identifying patients with a shorter life expectancy would allow surgical intervention with more durable reconstructions to be targeted to those most likely to benefit. While previous scoring systems have focused on surgical and oncological factors, there is a need to consider comorbidities and the physiological state of the patient, as these will also affect outcome. The primary aim of this study was to create a scoring system to estimate survival time in patients with bony metastases and to determine which factors may adversely affect this. This was a retrospective study which included all patients who had presented for surgery with metastatic bone disease. The data collected included patient, surgical, and oncological variables. Univariable and multivariable analysis identified which factors were associated with a survival time of less than six months and less than one year. A model to predict survival based on these factors was developed using Cox regression.Aims
Methods
Our aim was to develop and validate nomograms that would predict the cumulative incidence of sarcoma-specific death (CISSD) and disease progression (CIDP) in patients with localized high-grade primary central and dedifferentiated chondrosarcoma. The study population consisted of 391 patients from two international sarcoma centres (development cohort) who had undergone definitive surgery for a localized high-grade (histological grade II or III) conventional primary central chondrosarcoma or dedifferentiated chondrosarcoma. Disease progression captured the first event of either metastasis or local recurrence. An independent cohort of 221 patients from three additional hospitals was used for external validation. Two nomograms were internally and externally validated for discrimination (c-index) and calibration plot.Aims
Methods