The primary aim of the study was to compare the knee-specific functional outcome of robotic unicompartmental knee arthroplasty (rUKA) with manual total knee arthroplasty (mTKA) for the management of isolated medial compartment osteoarthritis. Secondary aims were to compare length of hospital stay, general health improvement, and satisfaction between rUKA and mTKA. A powered (1:3 ratio) cohort study was performed. A total of 30 patients undergoing rUKA were propensity score matched to 90 patients undergoing mTKA for isolated medial compartment arthritis. Patients were matched for age, sex, body mass index (BMI), and preoperative function. The Oxford Knee Score (OKS) and EuroQol five-dimension questionnaire (EQ-5D) were collected preoperatively and six months postoperatively. The Forgotten Joint Score (FJS) and patient satisfaction were collected six months postoperatively. Length of hospital stay was also recorded.Aims
Methods
The outcome of total knee replacement (TKR) using
components designed to increase the range of flexion is not fully
understood. The short- to mid-term risk of aseptic revision in high
flexion TKR was evaluated. The endpoint of the study was aseptic
revision and the following variables were investigated: implant
design (high flexion In a cohort of 64 000 TKRs, high flexion components were used
in 8035 (12.5%). The high flexion knees with tibial liners of thickness
>
14 mm had a density of revision of 1.45/100 years of observation,
compared with 0.37/100 in non-high flexion TKR with liners ≤ 14
mm thick. Relative to a standard fixed PS TKR, the NexGen (Zimmer,
Warsaw, Indiana) Gender Specific Female high flexion fixed PS TKR
had an increased risk of revision (hazard ratio (HR) 2.27 (95% confidence
interval (CI) 1.48 to 3.50)), an effect that was magnified when
a thicker tibial insert was used (HR 8.10 (95% CI 4.41 to 14.89)). Surgeons should be cautious when choosing high flexion TKRs,
particularly when thicker tibial liners might be required. Cite this article: