We retrospectively reviewed 71 histopathologically-confirmed bone and soft-tissue metastases of unknown origin at presentation. In order to identify the site of the primary tumour all 71 cases were examined with conventional procedures, including CT, serum tumour markers, a plain radiograph, ultrasound examination and endoscopic examinations, and 24 of the 71 cases underwent 2-deoxy-2-[F-18] fluoro-D-glucose positron emission tomography (FDG-PET). This detected multiple bone metastases in nine patients and the primary site in 12 of the 24 cases; conventional studies revealed 16 primary tumours. There was no significant difference in sensitivity between FDG-PET and conventional studies. The mean maximal standardised uptake value of the metastatic tumours was significantly higher than that of the primary tumours, which is likely to explain why FDG-PET did not provide better results. It was not superior to conventional procedures in the search for the primary site of bone and soft-tissue metastases; however, it seemed to be useful in the staging of malignancy.
We prospectively examined the physical and imaging findings, including MRI, of 23 patients with spontaneous osteonecrosis of the knee after obtaining informed consent to acquire tissue specimens at surgery. There were four men and 19 women, with a mean age of 67.5 years (58 to 77). Plain radiographs were designated as stages 1, 2, 3 or 4 according to the classification of Koshino. Five knees were classified as stage 1, five as stage 2, seven as stage 3 and six as stage 4. The histological specimens were stained with haematoxylin and eosin and tetrachrome. In the early stages of the condition, a subchondral fracture was noted in the absence of any features of osteonecrosis, whereas in advanced stages, osteonecrotic lesions were confined to the area distal to the site of the fracture which showed impaired healing. In such cases, formation of cartilage and fibrous tissue, occurred indicating delayed or nonunion. These findings strongly suggest that the histopathology at each stage of spontaneous osteonecrosis is characterised by different types of repair reaction for subchondral fractures.
Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient
We have compared the concentrations of stromal-cell-derived factor-1 (SDF-1), matrix metalloproteinase-1 (MMP-1), MMP-9 and MMP-13 in serum before and after synovectomy or total knee replacement (TKR). We confirmed the presence of SDF-1 and its receptor CXCR4 in the synovium and articular cartilage by immunohistochemistry. We established chondrocytes by using mutant CXCR4 to block the release of MMPs. The level of SDF-1 was decreased 5.1- and 6.7-fold in the serum of patients with OA and RA respectively, after synovectomy compared with that before surgery. MMP-9 and MMP-13 were decreased in patients with OA and RA after synovectomy. We detected SDF-1 in the synovium and the bone marrow but not in cartilage. CXCR4 was detected in articular cartilage. SDF-1 increased the release of MMP-9 and MMP-13 from chondrocytes in a dose-dependent manner. The mutant CXCR4 blocked the release of MMP-9 and MMP-13 from chondrocytes by retrovirus vector. Synovectomy is effective in patients with OA or RA because SDF-1, which can regulate the release of MMP-9 and MMP-13 from articular chondrocytes for breakdown of cartilage, is removed by the operation.
We have analysed retrospectively the relationship between the axial parameters of alignment of the lower limb and the recurrence of varus deformity after high tibial osteotomy. We studied 29 patients (37 knees) with a mean age at surgery of 66 years. The mean follow-up was for 7.4 years (5 to 10.5). Recurrence of varus deformity was defined as an increase in the femorotibial angle of 3° or more, compared with that obtained six months after the operation. There were four patients (four knees) with recurrence of varus deformity. They had a greater varus inclination of the distal femur than those without varus recurrence. An association between varus inclination of the distal femur and horizontal obliquity of the joint surface was observed. Excessive obliquity prevents the shift of weight-bearing to the lateral compartment, and may cause a recurrence of varus deformity after high tibial osteotomy.
We performed positron emission tomography (PET) with 18fluorine-fluoro-2-deoxy-D-glucose (FDG) on 55 patients with tumours involving the musculoskeletal system in order to evaluate its role in operative planning. The standardised uptake value (SUV) of FDG was calculated and, to distinguish malignancies from benign lesions, the cases were divided into high (≥ 1.9) and low (<
1.9) SUV groups. The sensitivity of PET for correctly diagnosing malignancy was 100% with a specificity of 76.9% and an overall accuracy of 83.0%. The mean SUV for metastatic lesions was twice that for primary sarcomas (p <
0.0015). Our results suggest that the SUV may be useful in differentiating malignant tumours from benign lesions. However, some of the latter, such as schwannomas, had high SUVs so that biopsy or wide resection was selected as the first operation. Thus, some other quantitative analysis may be required for preoperative planning in cases of high-SUV neurogenic benign tumours. The reverse transcription-polymerase chain reaction revealed that the RNA message of a key enzyme in glucose metabolism, phosphohexose isomerase (PHI)/autocrine motility factor, was augmented in only high FDG-uptake lesions, suggesting that a high expression of the PHI message may be associated with accumulation of FDG in musculoskeletal tumours.
We studied 37 patients with varus osteoarthritis of the knee to determine the influence of the bone mineral density (BMD) on the varus deformity. There were 15 men (21 knees) and 22 women (38 knees). The mean age of the men was 69 years and of the women 68 years. BMD was measured in the L1–L4 spinal region using dual X-ray absorptiometry. In the women a low level of BMD was associated with varus deformity originating at the proximal tibia, but a high level was predominantly linked with deformity originating in the joint space. Similar findings were obtained in the men. Our results suggest that a low BMD predisposes to trabecular microfractures and consequently increased stress on the articular cartilage. A low BMD does not preclude osteoarthritic change in the knee.
We report six patients with isolated paralysis of the infraspinatus and discuss the diagnosis, pathology, treatment, and outcome over a mean follow-up period of 33 months. Four patients were shown to have space-occupying lesions at the spinoglenoid notch by MRI or ultrasonography or both, and ganglia were confirmed and removed surgically in three, with good results. Ganglia at this site are not uncommon and should be included in the differential diagnosis of patients presenting with shoulder pain and weakness.