The aim of this study was to examine the association between
postoperative glycaemic variability and adverse outcomes following
orthopaedic surgery. This retrospective study analyzed data on 12 978 patients (1361
with two operations) who underwent orthopaedic surgery at a single
institution between 2001 and 2017. Patients with a minimum of either
two postoperative measurements of blood glucose levels per day,
or more than three measurements overall, were included in the study.
Glycaemic variability was assessed using a coefficient of variation
(CV). The length of stay (LOS), in-hospital complications, and 90-day
readmission and mortality rates were examined. Data were analyzed
with linear and generalized linear mixed models for linear and binary
outcomes, adjusting for various covariates.Aims
Patients and Methods
The purpose of this article is to provide the
reader with a seven-step checklist that could help in minimising
the risk of PJI. The check list includes strategies that can be
implemented pre-operatively such as medical optimisation, and reduction
of the bioburden by effective skin preparation or actions taking
during surgery such as administration of timely and appropriate
antibiotics or blood conservation, and finally implementation of
post-operative protocols such as efforts to minimise wound drainage
and haematoma formation. Cite this article:
Nanotechnology is the study, production and controlled
manipulation of materials with a grain size <
100 nm. At this
level, the laws of classical mechanics fall away and those of quantum
mechanics take over, resulting in unique behaviour of matter in
terms of melting point, conductivity and reactivity. Additionally,
and likely more significant, as grain size decreases, the ratio
of surface area to volume drastically increases, allowing for greater interaction
between implants and the surrounding cellular environment. This
favourable increase in surface area plays an important role in mesenchymal
cell differentiation and ultimately bone–implant interactions. Basic science and translational research have revealed important
potential applications for nanotechnology in orthopaedic surgery,
particularly with regard to improving the interaction between implants
and host bone. Nanophase materials more closely match the architecture
of native trabecular bone, thereby greatly improving the osseo-integration
of orthopaedic implants. Nanophase-coated prostheses can also reduce
bacterial adhesion more than conventionally surfaced prostheses.
Nanophase selenium has shown great promise when used for tumour
reconstructions, as has nanophase silver in the management of traumatic
wounds. Nanophase silver may significantly improve healing of peripheral
nerve injuries, and nanophase gold has powerful anti-inflammatory
effects on tendon inflammation. Considerable advances must be made in our understanding of the
potential health risks of production, implantation and wear patterns
of nanophase devices before they are approved for clinical use.
Their potential, however, is considerable, and is likely to benefit
us all in the future. Cite this article:
Cite this article: