Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 342 - 344
1 Mar 1999
Hamer AJ Stockley I Elson RA

Secondary sterilisation of allograft bone by gamma irradiation is common, but the conditions under which it is performed vary between tissue banks. Some do so at room temperature, others while the bone is frozen. Bone is made brittle by irradiation because of the destruction of collagen alpha chains, probably mediated by free radicals generated from water molecules. Freezing reduces the mobility of water molecules and may therefore decrease the production of free radicals. We found that bone irradiated at −78°C was less brittle and had less collagen damage than when irradiated at room temperature. These findings may have implications for bone-banking.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 363 - 368
1 May 1996
Hamer AJ Strachan JR Black MM Ibbotson CJ Stockley I Elson RA

There have been conflicting reports on the effects of gamma irradiation on the material properties of cortical allograft bone. To investigate changes which result from the method of preparation, test samples must be produced with similar mechanical properties to minimise variations other than those resulting from treatment.

We describe a new method for the comparative measurement of bone strength using standard bone samples. We used 233 samples from six cadavers to study the effects of irradiation at a standard dose (28 kGy) alone and combined with deep freezing. We also investigated the effects of varying the dose from 6.8 to 60 kGy (n = 132).

None of the treatments had any effect on the elastic behaviour of the samples, but there was a reduction in strength to 64% of control values (p < 0.01) after irradiation with 28 kGy. There was also a dose-dependent reduction in strength and in the ability of the samples to absorb work before failure

We suggest that irradiation may cause an alteration in the bone matrix of allograft bone, but provided it is used in situations in which loading is within its elastic region, then failure should not occur.