Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 10, Issue 8 | Pages 548 - 557
25 Aug 2021
Tao Z Zhou Y Zeng B Yang X Su M

Aims. MicroRNA-183 (miR-183) is known to play important roles in osteoarthritis (OA) pain. The aims of this study were to explore the specific functions of miR-183 in OA pain and to investigate the underlying mechanisms. Methods. Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (CCL2), proinflammatory cytokines (interleukin (IL)-6, IL-1β, and tumour necrosis factor-α (TNF-α)), and pain-related factors (transient receptor potential vanilloid subtype-1 (TRPV1), voltage-gated sodium 1.3, 1.7, and 1.8 (Nav1.3, Nav1.7, and Nav1.8)). Expression of miR-183 in the dorsal root ganglia (DRG) of mice was evaluated by in situ hybridization. TGFα, CCL2, and C-C chemokine receptor type 2 (CCR2) levels were examined by immunoblot analysis and interaction between miR-183 and TGFα, determined by luciferase reporter assay. The extent of pain in mice was measured using a behavioural assay, and OA severity assessed by Safranin O and Fast Green staining. Immunofluorescent staining was conducted to examine the infiltration of macrophages in mouse DRG. Results. miR-183 was downregulated in tissue samples from patients and mice with OA. In DMM mice, overexpression of miR-183 inhibited the expression of proinflammatory cytokines (IL-6, IL-1β, TNF-α) and pain-related factors (TRPV1, Nav1.3, Nav1.7, Nav1.8) in DRG. OA pain was relieved by miR-183-mediated inhibition of macrophage infiltration, and dual luciferase reporter assay demonstrated that miR-183 directly targeted TGFα. Conclusion. Our data demonstrate that miR-183 can ameliorate OA pain by inhibiting the TGFα-CCL2/CCR2 signalling axis, providing an excellent therapeutic target for OA treatment. Cite this article: Bone Joint Res 2021;10(8):548–557


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims. Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results. The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1β and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1β and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion. Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA. Cite this article: Bone Joint Res 2024;13(3):110–123


Bone & Joint Research
Vol. 11, Issue 3 | Pages 162 - 170
14 Mar 2022
Samvelyan HJ Huesa C Cui L Farquharson C Staines KA

Aims

Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2-/-) display accelerated bone growth.

Methods

We examined vulnerability of Socs2-/- mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 214 - 225
20 Apr 2022
Hao X Zhang J Shang X Sun K Zhou J Liu J Chi R Xu T

Aims. Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive. Methods. A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed. Results. Eight-week treadmill-walking was effective at maintaining the integrity of cartilage-subchondral bone unit and reducing the elevated systematic inflammation factors and microbiome-derived metabolites. Furthermore, 16S ribosomal ribonucleic acid (rRNA) sequencing showed disease-relevant microbial shifts in PTOA animals, characterized by the decreased abundance of phylum TM7 and the increase of phylum Fusobacteria. At the genus level, the abundance of Lactobacillus, Turicibacter, Adlercreutzia, and Cetobacterium were increased in the PTOA animals, while the increase of Adlercreutzia and Cetobacterium was weakened as a response to exercise. The correlation analysis showed that genus Lactobacillus and Adlercreutzia were correlated to the structural OA phenotypes, while phylum Fusobacteria and genus Cetobacterium may contribute to the effects of exercise on the diminishment of serological inflammatory factors. Conclusion. Exercise is effective at maintaining the integrity of cartilage-subchondral bone unit, and the exercise-induced modification of disease-relevant microbial shifts is potentially involved in the mechanisms of exercise-induced amelioration of PTOA. Cite this article: Bone Joint Res 2022;11(4):214–225


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims

This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA).

Methods

Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.


Objectives

Activation of the leptin pathway is closely correlated with human knee cartilage degeneration. However, the role of the long form of the leptin receptor (Ob-Rb) in cartilage degeneration needs further study. The aim of this study was to determine the effect of increasing the expression of Ob-Rb on chondrocytes using a lentiviral vector containing Ob-Rb.

Methods

The medial and lateral cartilage samples of the tibial plateau from 12 osteoarthritis (OA) patients were collected. Ob-Rb messenger RNA (mRNA) was detected in these samples. The Ob-Rb-overexpressing chondrocytes and controls were treated with different doses of leptin for two days. The activation of the p53/p21 pathway and the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells were evaluated. The mammalian target of rapamycin (mTOR) signalling pathway and autophagy were detected after the chondrocytes were treated with a high dose of leptin.