Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 135 - 144
1 Jul 2021
Kuyl E Shu F Sosa BR Lopez JD Qin D Pannellini T Ivashkiv LB Greenblatt MB Bostrom MPG Yang X

Aims

Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue.

Methods

Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 3 - 10
1 Jul 2020
Sosa BR Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom M Yang X

Aims

Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment.

Methods

The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 886 - 889
1 Jul 2011
Bremer AK Kalberer F Pfirrmann CWA Dora C

The direct anterior approach in total hip replacement anatomically offers the chance to minimise soft-tissue trauma because an intermuscular and internervous plane is explored. This motivated us to abandon our previously used transgluteal approach and to adopt the direct anterior approach for total hip replacement. Using MRI, we performed a retrospective comparative study of the direct anterior approach with the transgluteal approach. There were 25 patients in each group. At one year post-operatively all the patients underwent MRI of their replaced hips. A radiologist graded the changes in the soft-tissue signals in the abductor muscles. The groups were similar in terms of age, gender, body mass index, complexity of the reconstruction and absence of symptoms.

Detachment of the abductor insertion, partial tears and tendonitis of gluteus medius and minimus, the presence of peri-trochanteric bursal fluid and fatty atrophy of gluteus medius and minimus were significantly less pronounced and less frequent when the direct anterior approach was used. There was no significant difference in the findings regarding tensor fascia lata between the two approaches.

We conclude that use of the direct anterior approach results in a better soft-tissue response as assessed by MRI after total hip replacement. However, the impact on outcome needs to be evaluated further.