Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 26 - 31
4 Jan 2021
Kildow BJ Ryan SP Danilkowicz R Lazarides AL Penrose C Bolognesi MP Jiranek W Seyler TM

Aims. Use of molecular sequencing methods in periprosthetic joint infection (PJI) diagnosis and organism identification have gained popularity. Next-generation sequencing (NGS) is a potentially powerful tool that is now commercially available. The purpose of this study was to compare the diagnostic accuracy of NGS, polymerase chain reaction (PCR), conventional culture, the Musculoskeletal Infection Society (MSIS) criteria, and the recently proposed criteria by Parvizi et al in the diagnosis of PJI. Methods. In this retrospective study, aspirates or tissue samples were collected in 30 revision and 86 primary arthroplasties for routine diagnostic investigation for PJI and sent to the laboratory for NGS and PCR. Concordance along with statistical differences between diagnostic studies were calculated. Results. Using the MSIS criteria to diagnose PJI as the reference standard, the sensitivity and specificity of NGS were 60.9% and 89.9%, respectively, while culture resulted in sensitivity of 76.9% and specificity of 95.3%. PCR had a low sensitivity of 18.4%. There was no significant difference based on sample collection method (tissue swab or synovial fluid) (p = 0.760). There were 11 samples that were culture-positive and NGS-negative, of which eight met MSIS criteria for diagnosing infection. Conclusion. In our series, NGS did not provide superior sensitivity or specificity results compared to culture. PCR has little utility as a standalone test for PJI diagnosis with a sensitivity of only 18.4%. Currently, several laboratory tests for PJI diagnosis should be obtained along with the overall clinical picture to help guide decision-making for PJI treatment. Cite this article: Bone Joint J 2021;103-B(1):26–31


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 923 - 930
1 May 2021
He R Wang Q Wang J Tang J Shen H Zhang X

Aims. As a proven and comprehensive molecular technique, metagenomic next-generation sequencing (mNGS) has shown its potential in the diagnosis of pathogens in patients with periprosthetic joint infection (PJI), using a single type of specimen. However, the optimal use of mNGS in the management of PJI has not been explored. In this study, we evaluated the diagnostic value of mNGS using three types of specimen with the aim of achieving a better choice of specimen for mNGS in these patients. Methods. In this prospective study, 177 specimens were collected from 59 revision arthroplasties, including periprosthetic tissues, synovial fluid, and prosthetic sonicate fluid. Each specimen was divided into two, one for mNGS and one for culture. The criteria of the Musculoskeletal Infection Society were used to define PJI (40 cases) and aseptic failure (19 cases). Results. The sensitivity and specificity of mNGS in the diagnosis of PJI were 95% and 94.7%, respectively, for all types of specimen. The sensitivity and specificity were 65% and 100%, respectively, for periprosthetic tissues, 87.5% and 94.7%, respectively, for synovial fluid, and 92.5% and 94.7%, respectively, for prosthetic sonicate fluid. The mNGS of prosthetic sonicate fluid outperformed that for other types of specimen in the rates of detection of pathogens (84.6%), sequencing reads (> ten-fold) and the rate of genome coverage (> five-fold). Conclusion. mNGS could serve as an accurate diagnostic tool in the detection of pathogens in patients with a PJI using three types of specimen. Due to its superior perfomance in identifying a pathogen, mNGS of prosthetic sonicate fluid provides the most value and may partly replace traditional tests such as bacteriological culture in these patients. Cite this article: Bone Joint J 2021;103-B(5):923–930


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 39 - 45
1 Jan 2021
Fang X Cai Y Mei J Huang Z Zhang C Yang B Li W Zhang W

Aims. Metagenomic next-generation sequencing (mNGS) is useful in the diagnosis of infectious disease. However, while it is highly sensitive at identifying bacteria, it does not provide information on the sensitivity of the organisms to antibiotics. The purpose of this study was to determine whether the results of mNGS can be used to guide optimization of culture methods to improve the sensitivity of culture from intraoperative samples. Methods. Between July 2014 and October 2019, patients with suspected joint infection (JI) from whom synovial fluid (SF) was obtained preoperatively were enrolled. Preoperative aspirated SF was analyzed by conventional microbial culture and mNGS. In addition to samples taken for conventional microbial culture, some samples were taken for intraoperative culture to optimize the culture method according to the preoperative mNGS results. The demographic characteristics, medical history, laboratory examination, mNGS, and culture results of the patients were recorded, and the possibility of the optimized culture methods improving diagnostic efficiency was evaluated. Results. A total of 56 cases were included in this study. There were 35 cases of JI and 21 cases of non-joint infection (NJI). The sensitivity, specificity, and accuracy of intraoperative microbial culture after optimization of the culture method were 94.29%, 76.19%, and 87.5%, respectively, while those of the conventional microbial culture method were 60%, 80.95%, and 67.86%, respectively. Conclusion. Preoperative aspirated SF detected via mNGS can provide more aetiological information than preoperative culture, which can guide the optimization and improve the sensitivity of intraoperative culture. Cite this article: Bone Joint J 2021;103-B(1):39–45


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1341 - 1348
3 Oct 2020
Scholten R Hannink G Willemsen K Mascini EM Somford MP Schreurs BW van Susante JLC

Aims

Preoperative nasal Staphylococcus aureus screening and eradication reduces surgical site infections (SSIs) but its impact on reducing early prosthetic joint infection (PJI) remains controversial. This study aims to assess the effect of preoperative nasal S. aureus screening and eradication on the incidence of early PJI in general and S. aureus-induced early PJI.

Methods

All primary total hip arthroplasties (THA) and total knee arthroplasties (TKA) performed from January 2006 to April 2018 were retrospectively reviewed for the incidence of early PJI. Demographic parameters, risk factors for PJI (American Society of Anaesthesiologists classification, body mass index, smoking status, and diabetes mellitus) and implant types were collected. A preoperative screening and eradication protocol for nasal colonization of S. aureus was introduced in October 2010. The incidence of early PJI was compared before and after the implementation of the protocol. Missing data were imputed via multiple imputation by chained equations. Inverse probability weighting was used to account for differences between patients in both groups. Weighted univariate logistic regression was used to evaluate the incidence of early PJI for both groups.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 463 - 469
1 Apr 2020
Qin L Hu N Li X Chen Y Wang J Huang W

Aims

Prosthetic joint infection (PJI) remains a major clinical challenge. Neutrophil CD64 index, Fc-gamma receptor 1 (FcγR1), plays an important role in mediating inflammation of bacterial infections and therefore could be a valuable biomarker for PJI. The aim of this study is to compare the neutrophil CD64 index in synovial and blood diagnostic ability with the standard clinical tests for discrimination PJI and aseptic implant failure.

Methods

A total of 50 patients undergoing revision hip and knee arthroplasty were enrolled into a prospective study. According to Musculoskeletal Infection Society (MSIS) criteria, 25 patients were classified as infected and 25 as not infected. In all patients, neutrophil CD64 index and percentage of polymorphonuclear neutrophils (PMN%) in synovial fluid, serum CRP, ESR, and serum CD64 index levels were measured preoperatively. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were analyzed for each biomarker.