Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel upright MRI scanner, to determine whether any deformation occurs in femoral heads affected by LCPD with weightbearing. Children affected by LCPD were recruited for analysis. Children received both standing weightbearing and supine scans in the MROpen upright MRI scanner, for coronal T1 GFE sequences, both hips in field of view. Parameters of femoral head height, width, and lateral extrusion of affected and unaffected hips were assessed by two independent raters, repeated at a one month interval. Inter- and intraclass correlation coefficients were determined. Standing and supine measurements were compared for each femoral head.Aims
Methods
We studied in
There is increasing evidence that flexible flatfoot (FF) can
lead to symptoms and impairment in health-related quality of life.
As such we undertook an observational study investigating the aetiology
of this condition, to help inform management. The hypothesis was
that as well as increased body mass index (BMI) and increased flexibility of
the lower limb, an absent anterior subtalar articulation would be
associated with a flatter foot posture. A total of 84 children aged between eight and 15 years old were
prospectively recruited. The BMI for each child was calculated,
flexibility was assessed using the lower limb assessment scale (LLAS)
and foot posture was quantified using the arch height index (AHI).
Each child underwent a sagittal T1-weighted MRI scan of at least
one foot. Aims
Patients and Methods
End caps are intended to prevent nail migration
(push-out) in elastic stable intramedullary nailing. The aim of
this study was to investigate the force at failure with and without
end caps, and whether different insertion angles of nails and end caps
would alter that force at failure. Simulated oblique fractures of the diaphysis were created in
15 artificial paediatric femurs. Titanium Elastic Nails with end
caps were inserted at angles of 45°, 55° and 65° in five specimens
for each angle to create three study groups. Biomechanical testing
was performed with axial compression until failure. An identical
fracture was created in four small adult cadaveric femurs harvested
from two donors (both female, aged 81 and 85 years, height 149 cm and
156 cm, respectively). All femurs were tested without and subsequently
with end caps inserted at 45°. In the artificial femurs, maximum force was not significantly
different between the three groups (p = 0.613). Push-out force was
significantly higher in the cadaveric specimens with the use of
end caps by an up to sixfold load increase (830 N, standard deviation
(SD) 280 These results indicate that the nail and end cap insertion angle
can be varied within 20° without altering construct stability and
that the risk of elastic stable intramedullary nailing push–out
can be effectively reduced by the use of end caps. Cite this article:
Matrix metalloproteinases (MMPs), responsible
for extracellular matrix remodelling and angiogenesis, might play
a major role in the response of the growth plate to detrimental
loads that lead to overuse injuries in young athletes. In order
to test this hypothesis, human growth plate chondrocytes were subjected
to mechanical forces equal to either physiological loads, near detrimental
or detrimental loads for two hours. In addition, these cells were
exposed to physiological loads for up to 24 hours. Changes in the
expression of MMPs -2, -3 and -13 were investigated. We found that expression of MMPs in cultured human growth plate
chondrocytes increases in a linear manner with increased duration
and intensity of loading. We also showed for the first time that
physiological loads have the same effect on growth plate chondrocytes
over a long period of time as detrimental loads applied for a short
period. These findings confirm the involvement of MMPs in overuse injuries
in children. We suggest that training programmes for immature athletes
should be reconsidered in order to avoid detrimental stresses and
over-expression of MMPs in the growth plate, and especially to avoid
physiological loads becoming detrimental. Cite this article: