Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 911 - 916
1 Jul 2013
Small SR Ritter MA Merchun JG Davis KE Rogge RD

Stress shielding resulting in diminished bone density following total knee replacement (TKR) may increase the risk of migration and loosening of the prosthesis. This retrospective study was designed to quantify the effects of the method of fixation on peri-prosthetic tibial bone density beneath cemented and uncemented tibial components of similar design and with similar long-term survival rates. Standard radiographs taken between two months and 15 years post-operatively were digitised from a matched group of TKRs using cemented (n = 67) and uncemented (n = 67) AGC tibial prostheses. Digital radiograph densitometry was used to quantify changes in bone density over time. Age, length of follow-up, gender, body mass index and alignment each significantly influenced the long-term pattern of peri-prosthetic bone density. Similar long-term changes in density irrespective of the method of fixation correlated well with the high rate of survival of this TKR at 20 years, and suggest that cemented and uncemented fixation are both equally viable. Cite this article: Bone Joint J 2013;95-B:911–16


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia.

Methods

In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1480 - 1483
1 Nov 2013
Hooper GJ Gilchrist N Maxwell R March R Heard A Frampton C

We studied the bone mineral density (BMD) and the bone mineral content (BMC) of the proximal tibia in patients with a well-functioning uncemented Oxford medial compartment arthroplasty using the Lunar iDXA bone densitometer. Our hypothesis was that there would be decreased BMD and BMC adjacent to the tibial base plate and increased BMD and BMC at the tip of the keel.

There were 79 consecutive patients (33 men, 46 women) with a mean age of 65 years (44 to 84) with a minimum two-year follow-up (mean 2.6 years (2.0 to 5.0)) after unilateral arthroplasty, who were scanned using a validated standard protocol where seven regions of interest (ROI) were examined and compared with the contralateral normal knee. All had well-functioning knees with a mean Oxford knee score of 43 (14 to 48) and mean Knee Society function score of 90 (20 to 100), showing a correlation with the increasing scores and higher BMC and BMD values in ROI 2 in the non-implanted knee relative to the implanted knee (p = 0.013 and p = 0.015, respectively).

The absolute and percentage changes in BMD and BMC were decreased in all ROIs in the implanted knee compared with the non-implanted knee, but this did not reach statistical significance. Bone loss was markedly less than reported losses with total knee replacement.

There was no significant association with side, although there was a tendency for the BMC to decrease with age in men. The BMC was less in the implanted side relative to the non-implanted side in men compared with women in ROI 2 (p = 0.027), ROI 3 (p = 0.049) and ROI 4 (p = 0.029).

The uncemented Oxford medial compartment arthroplasty appears to allow relative preservation of the BMC and BMD of the proximal tibia, suggesting that the implant acts more physiologically than total knee replacement. Peri-prosthetic bone loss is an important factor in assessing long-term implant stability and survival, and the results of this study are encouraging for the long-term outcome of this arthroplasty.

Cite this article: Bone Joint J 2013;95-B:1480–3.


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1358 - 1363
1 Oct 2015
Hooper N Snell D Hooper G Maxwell R Frampton C

This study reports on the first 150 consecutive Oxford cementless unicompartmental knee arthroplasties (UKA) performed in an independent centre (126 patients). All eligible patients had functional scores (Oxford knee score and high activity arthroplasty score) recorded pre-operatively and at two- and five-years of follow-up. Fluoroscopically aligned radiographs were taken at five years and analysed for any evidence of radiolucent lines (RLLs), subsidence or loosening. The mean age of the cohort was 63.6 years (39 to 86) with 81 (53.1%) males. Excellent functional scores were maintained at five years and there were no progressive RLLs demonstrated on radiographs. Two patients underwent revision to a total knee arthroplasty giving a revision rate of 0.23/100 (95% confidence interval 0.03 to 0.84) component years with overall component survivorship of 98.7% at five years. There were a further four patients who underwent further surgery on the same knee, two underwent bearing exchanges for dislocation and two underwent lateral UKAs for disease progression. This was a marked improvement from other UKAs reported in New Zealand Joint Registry data and supports the designing centre’s early results.

Cite this article: Bone Joint J 2015;97-B:1358–63.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 190 - 195
1 Feb 2009
Robertson DD Armfield DR Towers JD Irrgang JJ Maloney WJ Harner CD

We describe injuries to the posterior root of the medial meniscus in patients with spontaneous osteonecrosis of the medial compartment of the knee. We identified 30 consecutive patients with spontaneous osteonecrosis of the medial femoral condyle. The radiographs and MR imaging were reviewed. We found tears of the posterior root of the medial meniscus in 24 patients (80%). Of these, 15 were complete and nine were partial. Complete tears were associated with > 3 mm of meniscal extrusion. Neither the presence of a root tear nor the volume of the osteonecrotic lesion were associated with age, body mass index (BMI), gender, side affected, or knee alignment. The grade of osteoarthritis was associated with BMI.

Although tears of the posterior root of the medial meniscus were frequently present in patients with spontaneous osteonecrosis of the knee, this does not prove cause and effect. Further study is warranted.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 606 - 613
1 May 2006
Abu-Rajab RB Watson WS Walker B Roberts J Gallacher SJ Meek RMD

We compared peri-prosthetic bone mineral density between identical cemented and cementless LCS rotating platform total knee arthroplasties. Two matched cohorts had dual energy x-ray absorptiometry scans two years post-operatively using a modified validated densitometric analysis protocol, to assess peri-prosthetic bone mineral density. The knee that was not operated on was also scanned to enable the calculation of a relative bone mineral density difference. Oxford Knee and American Knee Society scores were comparable in the two cohorts.

Statistical analysis revealed no significant difference in absolute, or relative peri-prosthetic bone mineral density with respect to the method of fixation. However, the femoral peri-prosthetic bone mineral density and relative bone mineral density difference were significantly decreased, irrespective of the method of fixation, particularly in the anterior distal portion of the femur, with a mean reduction in relative bone mineral density difference of 27%.

There was no difference in clinical outcome between the cemented and cementless LCS total knee arthroplasty. However, both produce stress-shielding around the femoral implants. This leads us to question the use of more expensive cementless total knee components.