Advertisement for orthosearch.org.uk
Results 1 - 20 of 236
Results per page:
Bone & Joint Research
Vol. 6, Issue 7 | Pages 405 - 413
1 Jul 2017
Matharu GS Judge A Murray DW Pandit HG

Objectives. Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision. Methods. We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression. Results. Intra-operative complications occurred in 6.0% (n = 11) of the 185 cases. The cumulative four-year patient survival rate was 98.2% (95% CI 92.9 to 99.5). Re-revision surgery was performed in 13.5% (n = 25) of hips at a mean time of 1.2 years (0.1 to 3.1 years) following ARMD revision. Infection (32%; n = 8), dislocation/subluxation (24%; n = 6), and aseptic loosening (24%; n = 6) were the most common re-revision indications. The cumulative four-year implant survival rate was 83.8% (95% CI 76.7 to 88.9). Multivariable analysis identified three predictors of re-revision: multiple revision indications (hazard ratio (HR) = 2.78; 95% CI 1.03 to 7.49; p = 0.043); selective component revisions (HR = 5.76; 95% CI 1.28 to 25.9; p = 0.022); and ceramic-on-polyethylene revision bearings (HR = 3.08; 95% CI 1.01 to 9.36; p = 0.047). Conclusions. Non-MoMHAs revised for ARMD have a high short-term risk of re-revision, with important predictors of future re-revision including selective component revision, multiple revision indications, and ceramic-on-polyethylene revision bearings. Our findings may help counsel patients about the risks of ARMD revision, and guide reconstructive decisions. Future studies attempting to validate the predictors identified should also assess the effects of implant design (metallurgy and modularity), given that this was an important study limitation potentially influencing the reported prognostic factors. Cite this article: G. S. Matharu, A. Judge, D. W. Murray, H. G. Pandit. Outcomes following revision surgery performed for adverse reactions to metal debris in non-metal-on-metal hip arthroplasty patients: Analysis of 185 revisions from the National Joint Registry for England and Wales. Bone Joint Res 2017;6:405–413. DOI: 10.1302/2046-3758.67.BJR-2017-0017.R2


Bone & Joint Research
Vol. 5, Issue 9 | Pages 379 - 386
1 Sep 2016
Pahuta M Smolders JM van Susante JL Peck J Kim PR Beaule PE

Objectives. Alarm over the reported high failure rates for metal-on-metal (MoM) hip implants as well as their potential for locally aggressive Adverse Reactions to Metal Debris (ARMDs) has prompted government agencies, internationally, to recommend the monitoring of patients with MoM hip implants. Some have advised that a blood ion level >7 µg/L indicates potential for ARMDs. We report a systematic review and meta-analysis of the performance of metal ion testing for ARMDs. Methods. We searched MEDLINE and EMBASE to identify articles from which it was possible to reconstruct a 2 × 2 table. Two readers independently reviewed all articles and extracted data using explicit criteria. We computed a summary receiver operating curve using a Bayesian random-effects hierarchical model. Results. Our literature search returned 575 unique articles; only six met inclusion criteria defined a priori. The discriminative capacity of ion tests was homogeneous across studies but that there was substantial cut-point heterogeneity. Our best estimate of the “true” area under curve (AUC) for metal ion testing is 0.615, with a 95% credible interval of 0.480 to 0.735, thus we can state that the probability that metal ion testing is actually clinically useful with an AUC ≥ 0.75 is 1.7%. Conclusion. Metal ion levels are not useful as a screening test for identifying high risk patients because ion testing will either lead to a large burden of false positive patients, or otherwise marginally modify the pre-test probability. With the availability of more accurate non-invasive tests, we did not find any evidence for using blood ion levels to diagnose symptomatic patients. Cite this article: M. Pahuta, J. M. Smolders, J. L. van Susante, J. Peck, P. R. Kim, P. E. Beaule. Blood metal ion levels are not a useful test for adverse reactions to metal debris: a systematic review and meta-analysis. Bone Joint Res 2016;5:379–386. DOI: 10.1302/2046-3758.59.BJR-2016-0027.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 164 - 171
1 Feb 2011
Langton DJ Joyce TJ Jameson SS Lord J Van Orsouw M Holland JP Nargol AVF De Smet KA

We sought to establish the incidence of joint failure secondary to adverse reaction to metal debris (ARMD) following metal-on-metal hip resurfacing in a large, three surgeon, multicentre study involving 4226 hips with a follow-up of 10 to 142 months. Three implants were studied: the Articular Surface Replacement; the Birmingham Hip Resurfacing; and the Conserve Plus. Retrieved implants underwent analysis using a co-ordinate measuring machine to determine volumetric wear. There were 58 failures associated with ARMD. The median chromium and cobalt concentrations in the failed group were significantly higher than in the control group (p < 0.001). Survival analysis showed a failure rate in the patients with Articular Surface Replacement of 9.8% at five years, compared with < 1% at five years for the Conserve Plus and 1.5% at ten years for the Birmingham Hip Resurfacing. Two ARMD patients had relatively low wear of the retrieved components. Increased wear from the metal-on-metal bearing surface was associated with an increased rate of failure secondary to ARMD. However, the extent of tissue destruction at revision surgery did not appear to be dose-related to the volumetric wear


Bone & Joint Research
Vol. 8, Issue 3 | Pages 146 - 155
1 Mar 2019
Langton DJ Natu S Harrington CF Bowsher JG Nargol AVF

Objectives. We investigated the reliability of the cobalt-chromium (CoCr) synovial joint fluid ratio (JFR) in identifying the presence of a severe aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response and/or suboptimal taper performance (SOTP) following metal-on-metal (MoM) hip arthroplasty. We then examined the possibility that the CoCr JFR may influence the serum partitioning of Co and Cr. Methods. For part A, we included all revision surgeries carried out at our unit with the relevant data, including volumetric wear analysis, joint fluid (JF) Co and Cr concentrations, and ALVAL grade (n = 315). Receiver operating characteristic curves were constructed to assess the reliability of the CoCr JFR in identifying severe ALVAL and/or SOTP. For part B, we included only patients with unilateral prostheses who had given matched serum and whole blood samples for Co and Cr analysis (n = 155). Multiple regression was used to examine the influence of JF concentrations on the serum partitioning of Co and Cr in the blood. Results. A CoCr JFR > 1 showed a specificity of 83% (77% to 88%) and sensitivity of 63% (55% to 70%) for the detection of severe ALVAL and/or SOTP. In patients with CoCr JFRs > 1, the median blood Cr to serum Cr ratio was 0.99, compared with 0.71 in patients with CoCr JFRs < 1 (p < 0.001). Regression analysis demonstrated that the blood Cr to serum Cr value was positively associated with the JF Co concentration (p = 0.011) and inversely related to the JF Cr concentration (p < 0.001). Conclusion. Elevations in CoCr JFRs are associated with adverse biological (severe ALVAL) or tribocorrosive processes (SOTP). Comparison of serum Cr with blood Cr concentrations may be a useful additional clinical tool to help to identify these conditions. Cite this article: D. J. Langton, S. Natu, C. F. Harrington, J. G. Bowsher, A. V. F. Nargol. Is the synovial fluid cobalt-to-chromium ratio related to the serum partitioning of metal debris following metal-on-metal hip arthroplasty? Bone Joint Res 2019;8:146–155. DOI: 10.1302/2046-3758.83.BJR-2018-0049.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 4 | Pages 568 - 574
1 Jul 1994
Huk O Bansal M Betts F Rimnac C Lieberman Huo M Salvati E

We report a prospective study of the liner-metal interfaces of modular uncemented acetabular components as sources of debris. We collected the pseudomembrane from the screw-cup junction and the empty screw holes of the metal backing of 19 acetabula after an average implantation of 22 months. Associated osteolytic lesions were separately collected in two cases. The back surfaces of the liners and the screws were examined for damage, and some liners were scanned by electron microscopy. The tissues were studied histologically and by atomic absorption spectrophotometry to measure titanium content. The pseudomembrane from the screw-cup junction contained polyethylene debris in seven specimens and metal debris in ten. The material from empty screw holes was necrotic tissue or dense fibroconnective tissue with a proliferative histiocytic infiltrate and foreign-body giant-cell reaction. It contained polyethylene debris in 14 cases and metal in five. The two acetabular osteolytic lesions also showed a foreign-body giant-cell reaction to particulate debris. The average titanium levels in pseudomembranes from the screw-cup junction and the empty screw holes were 959 micrograms/g (48 to 11,900) and 74 micrograms/g (0.72 to 331) respectively. The tissue from the two lytic lesions showed average titanium levels of 139 and 147 micrograms/g respectively. The back surfaces of the PE liners showed surface deformation, burnishing, and embedded metal debris. All 30 retrieved screws demonstrated fretting at the base of the head and on the proximal shaft. Non-articular modular junctions create new interfaces for the generation of particulate debris, which may cause granulomatous reaction


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1600 - 1609
1 Dec 2014
Matharu GS Pynsent PB Sumathi VP Mittal S Buckley CD Dunlop DJ Revell PA Revell MP

We undertook a retrospective cohort study to determine clinical outcomes following the revision of metal-on-metal (MoM) hip replacements for adverse reaction to metal debris (ARMD), and to identify predictors of time to revision and outcomes following revision. Between 1998 and 2012 a total of 64 MoM hips (mean age at revision of 57.8 years; 46 (72%) female; 46 (72%) hip resurfacings and 18 (28%) total hip replacements) were revised for ARMD at one specialist centre. At a mean follow-up of 4.5 years (1.0 to 14.6) from revision for ARMD there were 13 hips (20.3%) with post-operative complications and eight (12.5%) requiring re-revision. . The Kaplan–Meier five-year survival rate for ARMD revision was 87.9% (95% confidence interval 78.9 to 98.0; 19 hips at risk). Excluding re-revisions, the median absolute Oxford hip score (OHS) following ARMD revision using the percentage method (0% best outcome and 100% worst outcome) was 18.8% (interquartile range (IQR) 7.8% to 48.3%), which is equivalent to 39/48 (IQR 24.8/48 to 44.3/48) when using the modified OHS. Histopathological response did not affect time to revision for ARMD (p = 0.334) or the subsequent risk of re-revision (p = 0.879). Similarly, the presence or absence of a contralateral MoM hip bearing did not affect time to revision for ARMD (p = 0.066) or the subsequent risk of re-revision (p = 0.178). . Patients revised to MoM bearings had higher rates of re-revision (five of 16 MoM hips re-revised; p = 0.046), but those not requiring re-revision had good functional results (median absolute OHS 14.6% or 41.0/48). Short-term morbidity following revision for ARMD was comparable with previous reports. Caution should be exercised when choosing bearing surfaces for ARMD revisions. Cite this article: Bone Joint J 2014;96-B:1600–9


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1455 - 1462
1 Nov 2016
Matharu GS Berryman F Brash L Pynsent PB Dunlop DJ Treacy RBC

Aims. We investigated whether blood metal ion levels could effectively identify patients with bilateral Birmingham Hip Resurfacing (BHR) implants who have adverse reactions to metal debris (ARMD). Patients and Methods. Metal ion levels in whole blood were measured in 185 patients with bilateral BHRs. Patients were divided into those with ARMD who either had undergone a revision for ARMD or had ARMD on imaging (n = 30), and those without ARMD (n = 155). Receiver operating characteristic analysis was used to determine the optimal thresholds of blood metal ion levels for identifying patients with ARMD. Results. The maximum level of cobalt or chromium ions in the blood was the parameter which produced the highest area under the curve (91.0%). The optimal threshold for distinguishing between patients with and without ARMD was 5.5 µg/l (83.3% sensitivity, 88.4% specificity, 58.1% positive and 96.5% negative predictive values). Similar results were obtained in a subgroup of 111 patients who all underwent cross-sectional imaging. Between 3.2% and 4.3% of patients with ARMD were missed if United Kingdom (7 µg/l) and United States (10 µg/l) authority thresholds were used respectively, compared with 2.7% if our implant specific threshold was used, though these differences did not reach statistical significance (p ≥ 0.248). Conclusion. Patients with bilateral BHRs who have blood metal ion levels below our implant specific threshold were at low-risk of having ARMD. Cite this article: Bone Joint J 2016;98-B:1455–62


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1610 - 1617
1 Dec 2014
Lainiala O Eskelinen A Elo P Puolakka T Korhonen J Moilanen T

We conducted a retrospective study to assess the prevalence of adverse reactions to metal debris (ARMD) in patients operated on at our institution with metal-on-metal (MoM) total hip replacements with 36 mm heads using a Pinnacle acetabular shell. A total of 326 patients (150 males, 175 hips; 176 females, 203 hips) with a mean age of 62.7 years (28 to 85) and mean follow-up of 7.5 years (0.1 to 10.8) participating in our in-depth modern MoM follow-up programme were included in the study, which involved recording whole blood cobalt and chromium ion measurements, Oxford hip scores (OHS) and plain radiographs of the hip and targeted cross-sectional imaging. Elevated blood metal ion levels (> 5 parts per billion) were seen in 32 (16.1%) of the 199 patients who underwent unilateral replacement. At 23 months after the start of our modern MoM follow-up programme, 29 new cases of ARMD had been revealed. Hence, the nine-year survival of this cohort declined from 96% (95% CI 95 to 98) with the old surveillance routine to 86% (95% CI 82 to 90) following the new protocol. Although ARMD may not be as common in 36 mm MoM THRs as in those with larger heads, these results support the Medicines and Healthcare Products Regulatory Agency guidelines on regular reviews and further investigations, and emphasise the need for specific a follow-up programme for patients with MoM THRs. Cite this article: Bone Joint J 2014; 96-B:1610–17


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 94 - 101
1 Jun 2021
Roy ME Whiteside LA Ly KK Gauvain MJ

Aims

The aims of this study were to evaluate wear on the surface of cobalt-chromium (CoCr) femoral components used in total knee arthroplasty (TKA) and compare the wear of these components with that of ceramic femoral components.

Methods

Optical profilometry was used to evaluate surface roughness and to examine the features created by the wear process in a knee wear simulator. We developed a method of measuring surface changes on five CoCr femoral components and quantifying the loss of material from the articular surface during the wear process. We also examined the articular surface of three ceramic femoral components from a previous test for evidence of surface damage, and compared it with that of CoCr components.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 149 - 156
4 Apr 2024
Rajamäki A Lehtovirta L Niemeläinen M Reito A Parkkinen J Peräniemi S Vepsäläinen J Eskelinen A

Aims. Metal particles detached from metal-on-metal hip prostheses (MoM-THA) have been shown to cause inflammation and destruction of tissues. To further explore this, we investigated the histopathology (aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) score) and metal concentrations of the periprosthetic tissues obtained from patients who underwent revision knee arthroplasty. We also aimed to investigate whether accumulated metal debris was associated with ALVAL-type reactions in the synovium. Methods. Periprosthetic metal concentrations in the synovia and histopathological samples were analyzed from 230 patients from our institution from October 2016 to December 2019. An ordinal regression model was calculated to investigate the effect of the accumulated metals on the histopathological reaction of the synovia. Results. Median metal concentrations were as follows: cobalt: 0.69 μg/g (interquartile range (IQR) 0.10 to 6.10); chromium: 1.1 μg/g (IQR 0.27 to 4.10); and titanium: 1.6 μg/g (IQR 0.90 to 4.07). Moderate ALVAL scores were found in 30% (n = 39) of the revised knees. There were ten patients with an ALVAL score of 6 or more who were revised for suspected periprosthetic joint infection (PJI), aseptic loosening, or osteolysis. R2 varied between 0.269 and 0.369 for the ordinal regression models. The most important variables were model type, indication for revision, and cobalt and chromium in the ordinal regression models. Conclusion. We found that metal particles released from the knee prosthesis can accumulate in the periprosthetic tissues. Several patients revised for suspected culture-negative PJI had features of an ALVAL reaction, which is a novel finding. Therefore, ALVAL-type reactions can also be found around knee prostheses, but they are mostly mild and less common than those found around metal-on-metal prostheses. Cite this article: Bone Joint Res 2024;13(4):149–156


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity. Cite this article: Bone Joint J 2024;106-B(4):312–318


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1020 - 1027
1 Aug 2017
Matharu GS Judge A Pandit HG Murray DW

Aims

To determine the outcomes following revision surgery of metal-on-metal hip arthroplasties (MoMHA) performed for adverse reactions to metal debris (ARMD), and to identify factors predictive of re-revision.

Patients and Methods

We performed a retrospective observational study using National Joint Registry (NJR) data on 2535 MoMHAs undergoing revision surgery for ARMD between 2008 and 2014. The outcomes studied following revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using competing-risk regression modelling.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials.

Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant.


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 5 | Pages 701 - 712
1 Sep 1994
Case C Langkamer V James C Palmer M Kemp A Heap P Solomon L

In a post-mortem study, we compared subjects with metal implants with and without visible wear with an age-matched control group to determine the extent and effects of dissemination of wear debris. In subjects with stainless-steel and cobalt-chrome prostheses metal was found in local and distant lymph nodes, bone marrow, liver and spleen. The levels were highest in subjects with loose, worn joint prostheses and the main source of the debris was the matt coating. Metal levels were also raised in subjects with implants without visible wear and, to a less extent, in those with dynamic hip screws. Necrosis of lymph nodes was seen in those cases with the most wear, and potential damage to more distant organs such as the bone marrow, liver and spleen in the long term cannot be discounted. The consequences for the immune system and the role of metal dissemination in the possible induction of neoplasia are discussed.


Aims. To report early (two-year) postoperative findings from a randomized controlled trial (RCT) investigating disease-specific quality of life (QOL), clinical, patient-reported, and radiological outcomes in patients undergoing a total shoulder arthroplasty (TSA) with a second-generation uncemented trabecular metal (TM) glenoid versus a cemented polyethylene glenoid (POLY) component. Methods. Five fellowship-trained surgeons from three centres participated. Patients aged between 18 and 79 years with a primary diagnosis of glenohumeral osteoarthritis were screened for eligibility. Patients were randomized intraoperatively to either a TM or POLY glenoid component. Study intervals were: baseline, six weeks, six-, 12-, and 24 months postoperatively. The primary outcome was the Western Ontario Osteoarthritis Shoulder QOL score. Radiological images were reviewed for metal debris. Mixed effects repeated measures analysis of variance for within and between group comparisons were performed. Results. A total of 93 patients were randomized (46 TM; 47 POLY). No significant or clinically important differences were found with patient-reported outcomes at 24-month follow-up. Regarding the glenoid components, there were no complications or revision surgeries in either group. Grade 1 metal debris was observed in three (6.5%) patients with TM glenoids at 24 months but outcomes were not negatively impacted. Conclusion. Early results from this RCT showed no differences in disease-specific QOL, radiographs, complication rates, or shoulder function between uncemented second-generation TM and cemented POLY glenoids at 24 months postoperatively. Revision surgeries and reoperations were reported in both groups, but none attributed to glenoid implant failure. At 24 months postoperatively, Grade 1 metal debris was found in 6.5% of patients with a TM glenoid but did not negatively influence patient-reported outcomes. Longer-term follow-up is needed and is underway. Cite this article: Bone Jt Open 2021;2(9):728–736


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 540 - 547
1 Jun 2024
Nandra RS Elnahal WA Mayne A Brash L McBryde CW Treacy RBC

Aims. The Birmingham Hip Resurfacing (BHR) was introduced in 1997 to address the needs of young active patients using a historically proven large-diameter metal-on-metal (MoM) bearing. A single designer surgeon’s consecutive series of 130 patients (144 hips) was previously reported at five and ten years, reporting three and ten failures, respectively. The aim of this study was to extend the follow-up of this original cohort at 25 years. Methods. The study extends the reporting on the first consecutive 144 resurfacing procedures in 130 patients for all indications. All operations were undertaken between August 1997 and May 1998. The mean age at operation was 52.1 years (SD 9.93; 17 to 76), and included 37 female patients (28.5%). Failure was defined as revision of either component for any reason. Kaplan-Meier survival analysis was performed. Routine follow-up with serum metal ion levels, radiographs, and Oxford Hip Scores (OHSs) was undertaken. Results. Overall implant survival was 83.50% (95% confidence interval (CI) 0.79 to 0.90) at 25 years, and the number at risk was 79. Survival in male patients at 25 years was 89.5% (95% CI 0.83 to 0.96) compared to 66.9% for female patients (95% CI 0.51 to 0.83). Ten additional failures occurred in the period of ten to 25 years. These involved an adverse reaction to metal debris in four patients, a periprosthetic femoral neck fracture affecting five patients, and aseptic loosening in one patient. The median chromium levels were 49.50 nmol/l (interquartile range (IQR) 34 to 70), and the median cobalt serum levels were 42 nmol/l (IQR 24.50 to 71.25). The median OHS at last follow-up was 35 (IQR 10 to 48). During the 25-year study period, 29 patients died. Patient survival at 25 years was 75.10% (95% CI 0.67 to 0.83). Conclusion. This study demonstrates that MoM hip resurfacing using the BHR provides a durable alternative to total hip arthroplasty (THA), particularly in younger male patients with osteoarthritis wishing to maintain a high level of function. These results compare favourably to the best results for THAs. Cite this article: Bone Joint J 2024;106-B(6):540–547


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 925 - 933
1 Jul 2016
Sidaginamale RP Joyce TJ Bowsher JG Lord JK Avery PJ Natu S Nargol AVF Langton DJ

Aims. We wished to investigate the influence of metal debris exposure on the subsequent immune response and resulting soft-tissue injury following metal-on-metal (MoM) hip arthroplasty. Some reports have suggested that debris generated from the head-neck taper junction is more destructive than equivalent doses from metal bearing surfaces. . Patients and Methods. We investigated the influence of the source and volume of metal debris on chromium (Cr) and cobalt (Co) concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using multiple regression analysis of prospectively collected data. A total of 199 explanted MoM hips (177 patients; 132 hips female) were analysed to determine rates of volumetric wear at the bearing surfaces and taper junctions. . Results. The statistical modelling suggested that a greater source contribution of metal debris from the taper junction was associated with smaller aggregated particle sizes in the local tissues and a relative reduction of Cr ion concentrations in the corresponding synovial fluid and blood samples. Metal debris generated from taper junctions appears to be of a different morphology, composition and therefore, potentially, immunogenicity to that generated from bearing surfaces. Conclusion. The differences in debris arising from the taper and the articulating surfaces may provide some understanding of the increased incidence of soft-tissue reactions reported in patients implanted with MoM total hip arthroplasties compared with patients with hip resurfacings. Cite this article: Bone Joint J 2016;98-B:925–33


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 38 - 46
1 Jan 2010
Langton DJ Jameson SS Joyce TJ Hallab NJ Natu S Nargol AVF

Early failure associated with adverse reactions to metal debris is an emerging problem after hip resurfacing but the exact mechanism is unclear. We analysed our entire series of 660 metal-on-metal resurfacings (Articular Surface Replacement (ASR) and Birmingham Hip Resurfacing (BHR)) and large-bearing ASR total hip replacements, to establish associations with metal debris-related failures. Clinical and radiological outcomes, metal ion levels, explant studies and lymphocyte transformation tests were performed. A total of 17 patients (3.4%) were identified (all ASR bearings) with adverse reactions to metal debris, for which revision was required. This group had significantly smaller components, significantly higher acetabular component anteversion, and significantly higher whole concentrations of blood and joint chromium and cobalt ions than asymptomatic patients did (all p < 0.001). Post-revision lymphocyte transformation tests on this group showed no reactivity to chromium or cobalt ions. Explants from these revisions had greater surface wear than retrievals for uncomplicated fractures. The absence of adverse reactions to metal debris in patients with well-positioned implants usually implies high component wear. Surgeons must consider implant design, expected component size and acetabular component positioning in order to reduce early failures when performing large-bearing metal-on-metal hip resurfacing and replacement


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1328 - 1337
1 Oct 2015
Briant-Evans TW Lyle N Barbur S Hauptfleisch J Amess R Pearce AR Conn KS Stranks GJ Britton JM

We investigated the changes seen on serial metal artefact reduction magnetic resonance imaging scans (MARS-MRI) of metal-on-metal total hip arthroplasties (MoM THAs). In total 155 THAs, in 35 male and 100 female patients (mean age 70.4 years, 42 to 91), underwent at least two MRI scans at a mean interval of 14.6 months (2.6 to 57.1), at a mean of 48.2 months (3.5 to 93.3) after primary hip surgery. Scans were graded using a modification of the Oxford classification. Progression of disease was defined as an increase in grade or a minimum 10% increase in fluid lesion volume at second scan. A total of 16 hips (30%) initially classified as ‘normal’ developed an abnormality on the second scan. Of those with ‘isolated trochanteric fluid’ 9 (47%) underwent disease progression, as did 7 (58%) of ‘effusions’. A total of 54 (77%) of hips initially classified as showing adverse reactions to metal debris (ARMD) progressed, with higher rates of progression in higher grades. Disease progression was associated with high blood cobalt levels or an irregular pseudocapsule lining at the initial scan. There was no association with changes in functional scores. Adverse reactions to metal debris in MoM THAs may not be as benign as previous reports have suggested. Close radiological follow-up is recommended, particularly in high-risk groups. Cite this article: Bone Joint J 2015;97-B:1328–37


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1662 - 1667
1 Dec 2016
Teoh KH von Ruhland C Evans SL James SH Jones A Howes J Davies PR Ahuja S

Aims. We present a case series of five patients who had revision surgery following magnetic controlled growing rods (MGCR) for early onset scoliosis. Metallosis was found during revision in four out of five patients and we postulated a mechanism for rod failure based on retrieval analysis. Patients and Methods. Retrieval analysis was performed on the seven explanted rods. The mean duration of MCGR from implantation to revision was 35 months (17 to 46). The mean age at revision was 12 years (7 to 15; four boys, one girl). Results. A total of six out of seven rods had tissue metallosis and pseudo-capsule surrounding the actuator. A total of four out of seven rods were pistoning. There were two rods which were broken. All rods had abrasive circumferential markings. A significant amount of metal debris was found when the actuators were carefully cut open. Analytical electron microscopy demonstrated metal fragments of predominantly titanium with a mean particle size of 3.36 microns (1.31 to 6.61). Conclusion. This study highlights concerns with tissue metallosis in MCGR. We recommend careful follow-up of patients who have received this implant. Cite this article: Bone Joint J 2016;98-B:1662–7