The hypothesis of this study was that bone peg fixation in the treatment of osteochondral lesions of the talus would show satisfactory clinical and radiological results, without complications. Between September 2014 and July 2017, 25 patients with symptomatic osteochondritis of the talus and an osteochondral fragment, who were treated using bone peg fixation, were analyzed retrospectively. All were available for complete follow-up at a mean 22 of months (12 to 35). There were 15 males and ten females with a mean age of 19.6 years (11 to 34). The clinical results were evaluated using a visual analogue scale (VAS) and the American Orthopaedic Foot and Ankle Society (AOFAS) score preoperatively and at the final follow-up. The radiological results were evaluated using classification described by Hepple et al based on the MRI findings, the location of the lesion, the size of the osteochondral fragment, and the postoperative healing of the lesion.Aims
Methods
The use of allografts for the treatment of bone tumours in children is limited by nonunion and the difficulty of finding a suitable graft. Furthermore, appositional growth can’t be expected of an allograft. We used an overlapping allograft in 11 children, with a mean age of ten years (4 to 15), with a mean follow-up of 24.1 months (20 to 33). There were five intercalary and six intra-articular resections, and the tumours were in the femur in six cases and the humerus in five. Rates of union, times to union, remodelling patterns and allograft-associated complications were evaluated. No allograft was removed due to a complication. Of the 16 junctional sites, 15 (94%) showed union at a mean of 3.1 months (2 to 5). Remodelling between host and allograft was seen at 14 junctions at a mean of five months (4 to 7). The mean Musculoskeletal Tumor Society score was 26.5 of 30 (88.3%). One case of nonunion and another with screw protrusion required re-operation. Overlapping allografts have the potential to shorten time to union, decrease rates of nonunion and have positive appositional growth effect.
Excision of a physeal bar and filling the space with interposition material may allow resumption of normal growth. Both the extent and the location of the bar and the amount of growth remaining from physis must be determined. Computer-assisted surgery is being used increasingly in various fields of orthopaedics. We describe the management of a patient with premature physeal arrest of the right distal tibia in which resection of a physeal bar was achieved under real-time three-dimensional intra-operative monitoring by computer-assisted navigation. The advantage of this method over other means of imaging is that intra-operative identification can increase the accuracy of resection of the bar.