Re-rupture is common after primary flexor tendon repair. Characterization of the biological changes in the ruptured tendon stumps would be helpful, not only to understand the biological responses to the failed tendon repair, but also to investigate if the tendon stumps could be used as a recycling biomaterial for tendon regeneration in the secondary grafting surgery. A canine flexor tendon repair and failure model was used. Following six weeks of repair failure, the tendon stumps were analyzed and characterized as isolated tendon-derived stem cells (TDSCs).Objectives
Methods
The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius.Objectives
Methods
The zona conoidea comprises the area of the lateral
trochlear ridge of the humerus. The purpose of this study is to reintroduce
this term ‘zona conoidea’ to the discussion of the human elbow and
to investigate its significance in the development of osteoarthritis
of the elbow. The upper extremities of 12 cadavers were prepared. With the
forearm in neutral, pronation and supination, the distance between
the bevel of the radial head and zona conoidea was inspected. A
total of 12 healthy volunteers had a CT scan. The distance between
the zona conoidea and the bevelled rim of the radial head was measured
in these positions. In the anatomical specimens, early osteo-arthritic changes were
identified in the posteromedial bevelled rim of the radial head,
and the corresponding zona conoidea in supination. Measurement in
the CT study showed that in full supination, the distance between
the bevel of the radial head and the zona conoidea was at a minimum. This study suggests that the significant contact between the
bevel of the radial head and the zona conoidea in supination is
associated with the initiation of osteoarthritis of the elbow in
this area.
The excursion resistance between the tendon and pulley is an important factor contributing to the limitation of function after surgery to the hand. The administration of hyaluronic acid (HA) in the early rehabilitation after tendon grafting may help to prevent adhesions. We evaluated changes in the excursion resistance between potential sources of flexor tendon grafts and the annular pulley in a canine model after administration of HA. The intrasynovial and extrasynovial tendons were soaked in 10 mg/ml of HA for five minutes. The excursion resistance between these tendons and the annular pulley of an intact proximal phalanx and that of the same tendons of the opposite foot without administration of HA were evaluated. The tendon of flexor digitorum profundus of the second toe without administration of HA was used as a control. The gliding resistance of canine tendons was significantly decreased after the administration of HA especially in the extrasynovial tendons. Our findings suggest that the administration of HA may improve the gliding function of a flexor tendon graft.
At a minimum of one year after operation, we studied 64 patients with 86 total hip arthroplasties (THA) by standard anteroposterior hip and pelvic radiographs and measurement of range of motion and of isometric abduction strength. The femoral offset correlated positively with the range of abduction (p = 0.046). Abduction strength correlated positively with both femoral offset (p = 0.0001) and the length of the abductor lever arm (p = 0.005). Using multiple regression, abduction strength correlated with height (p = 0.017), gender (p = 0.0005), range of flexion (p = 0.047) and the abductor lever arm (p = 0.060). Our findings suggest that greater femoral offset after THA allows both an increased range of abduction and greater abductor strength.
The stabilising effects on the glenohumeral joint of each of the rotator-cuff muscles and of the biceps were studied with the arm in abduction and external rotation in 13 cadaver shoulders. The muscles were loaded one at a time with forces proportional to their cross-sectional areas. We recorded the positions of the humeral head before and after the application to the humerus of an anterior force of 1.5 kg. When the capsule was intact, the anterior displacement with the subscapularis loaded was significantly larger than with the other muscles loaded (p = 0.0009). With the capsule vented, the displacement with the biceps loaded was significantly smaller than that with the subscapularis loaded (p = 0.0052). After creating an imitation Bankart lesion, the displacement with the biceps loaded was significantly less than with any of the rotator-cuff muscles loaded (p = 0.0132). We conclude that in the intact shoulder, the subscapularis is the least important anterior stabiliser, and that the biceps becomes more important than the rotator-cuff muscles as stability from the capsuloligamentous structure decreases. Strengthening of the biceps as well as the rotator-cuff muscles should be part of the rehabilitation programme for anterior shoulder instability.
We aimed to determine the optimal method of inserting a screw into polymethylmethacrylate (PMMA) cement to enhance fixation. We performed six groups of ten axial pull-out tests with two sizes of screw (3.5 and 4.5 mm AO cortical) and three methods of insertion. Screws were placed into 'fluid' PMMA, into 'solid' PMMA by drilling and tapping, or into 'curing' PMMA with quarter-revolution turns every 30 seconds until the PMMA had hardened. After full hardening, we measured the maximum load to failure for each screw-PMMA construct. We found no significant difference in the pull-out strengths between screw sizes or between screws placed in fluid or solid PMMA. Screws placed in curing PMMA were significantly weaker: the relative strengths of solid, fluid and curing groups were 100%, 97% and 71%, respectively. We recommend the use of either solid or fluid insertion according to the circumstances and the preference of the surgeon.
We studied the contributions of the long and short heads of the biceps (LHB, SHB) to anterior stability in 13 cadaver shoulders. The LHB and SHB were replaced by spring devices and translation tests at 90 degrees abduction of the arm were performed by applying a 1.5 kg anterior force. The position of the humeral head was monitored by an electromagnetic tracking device with or without an anterior translational force; with 0 kg, 1.5 kg or 3 kg loads applied on either LHB or SHB tendons in 60 degrees, 90 degrees or 120 degrees of external rotation; and with the capsule intact, vented, or damaged by a Bankart lesion. The anterior displacement of the humeral head under 1.5 kg force was significantly decreased by both the LHB and SHB loading in all capsular conditions when the arm was in 60 degrees or 90 degrees of external rotation. At 120 degrees of external rotation, anterior displacement was significantly decreased by LHB and SHB loading only when there was a Bankart lesion. We conclude that LHB and SHB have similar functions as anterior stabilizers of the glenohumeral joint with the arm in abduction and external rotation, and that their role increases as shoulder stability decreases. Both heads of the biceps have been shown to have a stabilising function in resisting anterior head displacement, and consideration should therefore be given to strengthening the biceps during rehabilitation programmes for chronic anterior instability of the shoulder.
We used 11 cadaver elbows and a three-dimensional electromagnetic tracking device to record elbow movements before and after implantation of a 'loose-hinged' elbow prosthesis (modified Coonrad). During simulated active motion there was a maximum of 2.7 degrees (+/- 1.5 degrees) varus/valgus laxity in the cadaver joints. This increased slightly after total elbow arthroplasty to 3.8 degrees (+/- 1.4 degrees). These values are lower than those recorded for the cadaver joints and for the prostheses at the limits of their varus/valgus displacements, indicating that both behave as 'semi-constrained' joints under physiological conditions. They suggest that the muscles absorb some of the forces and moments that in a constrained prosthesis would be transferred to the prosthesis-bone interface.
We studied the position and rotational changes associated with elevation of the glenohumeral joint, using a three-dimensional magnetic-field tracking system on nine fresh cadaveric shoulders. The plane of maximal arm elevation was shown to occur 23 degrees anterior to the plane of the scapula. Elevation in any plane anterior to the scapula required external humeral rotation, and maximal elevation was associated with approximately 35 degrees of external humeral rotation. Conversely, internal rotation was necessary for increased elevation posterior to the plane of the scapula. The observed effects of this rotation were to clear the humeral tuberosity from abutting beneath the acromion and to relax the inferior capsular ligamentous constraints. Measurement of the obligatory humeral rotation required for maximal elevation helps to explain the relationship of the limited elevation seen in adhesive capsulitis and after operations which limit external rotation.