The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering gene expression are increasingly
being recognised. Certain individuals’ tendons carry specific variations
of genetic sequence that may make them more susceptible to injury.
Alterations in the structure or relative amounts of the components
of tendon and fine control of activity within the extracellular
matrix affect the response of the tendon to loading with failure
in certain cases. This review summarises present knowledge of the influence of
genetic patterns on the pathology of the tendo Achillis, with a
focus on the possible biological mechanisms by which genetic factors
are involved in the aetiology of tendon pathology. Finally, we assess
potential future developments with both the opportunities and risks
that they may carry. Cite this article:
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article:
This short contribution aims to explain how intervertebral disc ‘degeneration’ differs from normal ageing, and to suggest how mechanical loading and constitutional factors interact to cause disc degeneration and prolapse. We suggest that disagreement on these matters in medico-legal practice often arises from a misunderstanding of the nature of ‘soft-tissue injuries’.
We analysed the clinical and radiological outcomes
of a new surgical technique for the treatment of heterozygote post-axial
metatarsal-type foot synpolydactyly with HOX-D13 genetic mutations
with a mean follow-up of 30.9 months (24 to 42). A total of 57 feet
in 36 patients (mean age 6.8 years (2 to 16)) were treated with
this new technique, which transfers the distal part of the duplicated
fourth metatarsal to the proximal part of the fifth metatarsal.
Clinical and radiological assessments were undertaken pre- and post-operatively
and any complications were recorded. Final outcomes were evaluated
according to the methods described by Phelps and Grogan. Forefoot width
was reduced and the lengths of the all reconstructed toes were maintained
after surgery. Union was achieved for all the metatarsal osteotomies
without any angular deformities. Outcomes at the final assessment
were excellent in 51 feet (89%) and good in six (11%). This newly
described surgical technique provides for painless, comfortable
shoe-wearing after a single, easy-to-perform operation with good
clinical, radiological and functional outcomes. Cite this article: