To confirm whether developmental dysplasia of
the hip has a risk of hip impingement, we analysed maximum ranges
of movement to the point of bony impingement, and impingement location
using three-dimensional (3D) surface models of the pelvis and femur
in combination with 3D morphology of the hip joint using computer-assisted methods.
Results of computed tomography were examined for 52 hip joints with
DDH and 73 normal healthy hip joints. DDH shows larger maximum extension
(p = 0.001) and internal rotation at 90° flexion (p <
0.001).
Similar maximum flexion (p = 0.835) and external rotation (p = 0.713)
were observed between groups, while high rates of extra-articular
impingement were noticed in these directions in DDH (p <
0.001).
Smaller cranial acetabular anteversion (p = 0.048), centre-edge
angles (p <
0.001), a circumferentially shallower acetabulum,
larger femoral neck anteversion (p <
0.001), and larger alpha
angle were identified in DDH. Risk of anterior impingement in retroverted
DDH hips is similar to that in retroverted normal hips in excessive
adduction but minimal in less adduction. These findings might be
borne in mind when considering the possibility of extra-articular
posterior impingement in DDH being a source of pain, particularly
for patients with a highly anteverted femoral neck. Cite this article:
The long-term results of grafting with hydroxyapatite granules for acetabular deficiency in revision total hip replacement are not well known. We have evaluated the results of revision using a modular cup with hydroxyapatite grafting for Paprosky type 2 and 3 acetabular defects at a minimum of ten years’ follow-up. We retrospectively reviewed 49 acetabular revisions at a mean of 135 months (120 to 178). There was one type 2B, ten 2C, 28 3A and ten 3B hips. With loosening as the endpoint, the survival rate was 74.2% (95% confidence interval 58.3 to 90.1). Radiologically, four of the type 3A hips (14%) and six of the type 3B hips (60%) showed aseptic loosening with collapse of the hydroxyapatite layer, whereas no loosening occurred in type 2 hips. There was consolidation of the hydroxyapatite layer in 33 hips (66%). Loosening was detected in nine of 29 hips (31%) without cement and in one of 20 hips (5%) with cement (p = 0.03, Fisher’s exact probability test). The linear wear and annual wear rate did not correlate with loosening. These results suggest that the long-term results of hydroxyapatite grafting with cement for type 2 and 3A hips are encouraging.
We compared a modular neck system with a non-modular system in a cementless anatomical total hip replacement (THR). Each group consisted of 74 hips with developmental hip dysplasia. Both groups had the same cementless acetabular component and the same articulation, which consisted of a conventional polyethylene liner and a 28 mm alumina head. The mean follow-up was 14.5 years (13 to 15), at which point there were significant differences in the mean total Harris hip score (modular/non-modular: 98.6 (64 to 100)/93.8 (68 to 100)), the mean range of abduction (32° (15° to 40°)/28 (0° to 40°)), use of a 10° elevated liner (31%/100%), the incidence of osteolysis (27%/79.7%) and the incidence of equal leg lengths (≥ 6 mm, 92%/61%). There was no disassociation or fracture of the modular neck. The modular system reduces the need for an elevated liner, thereby reducing the incidence of osteolysis. It gives a better range of movement and allows the surgeon to make an accurate adjustment of leg length.
We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group. We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement.
We investigated the effect of the Birmingham hip resurfacing (BHR) arthroplasty on the bone mineral density (BMD) of the femur. A comparative study was carried out on 26 hips in 25 patients. Group A consisted of 13 patients (13 hips) who had undergone resurfacing hip arthroplasty with the BHR system and group B of 12 patients (13 hips) who had had cementless total hip arthroplasty with a proximal circumferential plasma-spray titanium-coated anatomic Ti6A14V stem. Patients were matched for gender, state of disease and age at the time of surgery. The periprosthetic BMD of the femur was measured using dual-energy x-ray absorptiomentry of the Gruen zones at two years in patients in groups A and B. The median values of the BMD in zones 1 and 7 were 99% and 111%, respectively. The post-operative loss of the BMD in the proximal femur was significantly greater in group B than in group A. These findings show that the BHR system preserves the bone stock of the proximal femur after surgery.
We report two cases of surface deterioration of a zirconia ceramic femoral head associated with phase transformation after total hip arthroplasty. One head was retrieved at revision due to recurrent dislocation after six years and the other because of failure of the locking mechanism of the polyethylene liner after three years. The monoclinic content of the zirconia ceramics rose from 1% to about 30% on the surface of the heads. SEM revealed numerous craters indicating extraction of the zirconia ceramics at the surface. Surface roughness increased from an initial value of 0.006 3m up to 0.12 3m. This is the first report to show that phase transformation of zirconia ceramics causes deterioration of the surface roughness of the head in vivo after total hip arthroplasty.