The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.Objectives
Methods
A rat model of lumbar root constriction with an additional sympathectomy in some animals was used to assess whether the sympathetic nerves influenced radicular pain. Behavioural tests were undertaken before and after the operation. On the 28th post-operative day, both dorsal root ganglia and the spinal roots of L4 and L5 were removed, frozen and sectioned on a cryostat (8 μm to 10 μm). Immunostaining was then performed with antibodies to tyrosine hydroxylase (TH) according to the Avidin
The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.Objectives
Methods
Our understanding of the origin of hip pain in
degenerative disorders of the hip, including primary osteoarthritis, avascular
necrosis and femoroacetabular impingement (FAI), is limited. We
undertook a histological investigation of the nociceptive innervation
of the acetabular labrum, ligamentum teres and capsule of the hip,
in order to prove pain- and proprioceptive-associated marker expression.
These structures were isolated from 57 patients who had undergone
elective hip surgery (44 labral samples, 33 ligamentum teres specimens,
34 capsular samples; in 19 patients all three structures were harvested).
A total of
15 000 histological sections were prepared that were investigated
immunohistochemically for the presence of protein S-100, 68 kDa
neurofilament, neuropeptide Y, nociceptin and substance P. The tissues
were evaluated in six representative areas. Within the labrum, pain-associated free nerve ending expression
was located predominantly at its base, decreasing in the periphery.
In contrast, the distribution within the ligamentum teres showed
a high local concentration in the centre. The hip capsule had an
almost homogeneous marker expression in all investigated areas. This study showed characteristic distribution profiles of nociceptive
and pain-related nerve fibres, which may help in understanding the
origin of hip pain. Cite this article:
The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes. There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes