Large bone defects resulting from osteolysis, fractures, osteomyelitis, or metastases pose significant challenges in acetabular reconstruction for total hip arthroplasty. This study aimed to evaluate the survival and radiological outcomes of an acetabular reconstruction technique in patients at high risk of reconstruction failure (i.e. periprosthetic joint infection (PJI), poor bone stock, immunosuppressed patients), referred to as Hip Reconstruction In Situ with Screws and Cement (HiRISC). This involves a polyethylene liner embedded in cement-filled bone defects reinforced with screws and/or plates for enhanced fixation. A retrospective chart review of 59 consecutive acetabular reconstructions was performed by four surgeons in a single institution from 18 October 2018 to 5 January 2023. Cases were classified based on the Paprosky classification, excluding type 1 cases (n = 26) and including types 2 or 3 for analysis (n = 33). Radiological loosening was evaluated by an orthopaedic surgeon who was not the operating surgeon, by comparing the immediate postoperative radiographs with the ones at latest follow-up. Mean follow-up was 557 days (SD 441; 31 to 1,707).Aims
Methods
We report the use of porous metal acetabular
revision shells in the treatment of contained bone loss. The outcomes of
53 patients with
Aims. Large
An uncemented hemispherical acetabular component
is the mainstay of acetabular revision and gives excellent long-term
results. Occasionally, the degree of acetabular bone loss means that a
hemispherical component will be unstable when sited in the correct
anatomical location or there is minimal bleeding host bone left
for biological fixation. On these occasions an alternative method
of reconstruction has to be used. A major column structural allograft has been shown to restore
the deficient bone stock to some degree, but it needs to be off-loaded
with a reconstruction cage to prevent collapse of the graft. The
use of porous metal augments is a promising method of overcoming
some of the problems associated with structural allograft. If the defect
is large, the augment needs to be protected by a cage to allow ingrowth
to occur. Cup-cage reconstruction is an effective method of treating
chronic pelvic discontinuity and large contained or uncontained
bone defects. This paper presents the indications, surgical techniques and
outcomes of various methods which use acetabular reconstruction
cages for revision total hip arthroplasty. Cite this article:
We investigated the early results of modular porous metal components used in 23 acetabular reconstructions associated with major bone loss. The series included seven men and 15 women with a mean age of 67 years (38 to 81), who had undergone a mean of two previous revisions (1 to 7). Based on Paprosky’s classification, there were 17 type 3A and six type 3B defects. Pelvic discontinuity was noted in one case. Augments were used in 21 hips to support the shell and an acetabular component-cage construct was implanted in one case. At a mean follow-up of 41 months (24 to 62), 22 components remained well fixed. Two patients required rerevision of the liners for prosthetic joint instability. Clinically, the mean Harris Hip Score improved from 43.0 pre-operatively (14 to 86) to 75.7 post-operatively (53 to 100). The mean pre-operative Merle d’Aubigné score was 8.2 (3 to 15) and improved to a mean of 13.7 (11 to 18) post-operatively. These short-term results suggest that modular porous metal components are a viable option in the reconstruction of Paprosky type 3 acetabular defects. More data are needed to determine whether the system yields greater long-term success than more traditional methods, such as reconstruction cages and structural allografts.
The conventional method for reconstructing acetabular
bone loss at revision surgery includes using structural bone allograft.
The disadvantages of this technique promoted the advent of metallic
but biocompatible porous implants to fill bone defects enhancing
initial and long-term stability of the acetabular component. This
paper presents the indications, surgical technique and the outcome
of using porous metal acetabular augments for reconstructing acetabular
defects. Cite this article:
Aims. Bone stock restoration of
Aims. Various surgical techniques have been described for total hip arthroplasty (THA) in patients with Crowe type III dislocated hips, who have a large
We retrospectively evaluated 42 hips which had undergone acetabular reconstruction using the Kerboull acetabular reinforcement device between September 1994 and December 1998. We used autogenous bone chips from the ilium and ceramic particle morsellised grafts, even in large
Objectives. Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. Materials and Methods. A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and
To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.Aims
Methods
Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).Aims
Methods
The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.Aims
Methods
We retrospectively reviewed 44 consecutive patients
(50 hips) who underwent acetabular re-revision after a failed previous
revision that had been performed using structural or morcellised
allograft bone, with a cage or ring for uncontained defects. Of
the 50 previous revisions, 41 cages and nine rings were used with
allografts for 14 minor-column and 36 major-column defects. We routinely
assessed the size of the
After failed acetabular fractures, total hip arthroplasty (THA) is a challenging procedure and considered the gold standard treatment. The complexity of the procedure depends on the fracture pattern and the initial fracture management. This study’s primary aim was to evaluate patient-reported outcome measures (PROMs) for patients who underwent delayed uncemented acetabular THA after acetabular fractures. The secondary aims were to assess the radiological outcome and the incidence of the associated complications in those patients. A total of 40 patients underwent cementless acetabular THA following failed treatment of acetabular fractures. The postoperative clinical and radiological outcomes were evaluated for all the cohort.Aims
Methods
There is a paucity of long-term studies analyzing risk factors for failure after single-stage revision for periprosthetic joint infection (PJI) following total hip arthroplasty (THA). We report the mid- to long-term septic and non-septic failure rate of single-stage revision for PJI after THA. We retrospectively reviewed 88 cases which met the Musculoskeletal Infection Society (MSIS) criteria for PJI. Mean follow-up was seven years (1 to 14). Septic failure was diagnosed with a Delphi-based consensus definition. Any reoperation for mechanical causes in the absence of evidence of infection was considered as non-septic failure. A competing risk regression model was used to evaluate factors associated with septic and non-septic failures. A Kaplan-Meier estimate was used to analyze mortality.Aims
Methods
This single-centre observational study aimed to describe the results of extensive bone impaction grafting of the whole acetabular cavity in combination with an uncemented component in acetabular revisions performed in a standardized manner since 1993. Between 1993 and 2013, 370 patients with a median age of 72 years (interquartile range (IQR) 63 to 79 years) underwent acetabular revision surgery. Of these, 229 were more than ten years following surgery and 137 were more than 15 years. All revisions were performed with extensive use of morcellized allograft firmly impacted into the entire acetabular cavity, followed by insertion of an uncemented component with supplementary screw fixation. All types of reoperation were captured using review of radiographs and medical charts, combined with data from the local surgical register and the Swedish Hip Arthroplasty Register.Aims
Methods
The aim of this study was to analyze the effect of a lateral rim mesh on the survival of primary total hip arthroplasty (THA) in young patients, aged 50 years or younger. We compared a study group of 235 patients (257 hips) who received a primary THA with the use of impaction bone grafting (IBG) with an additional lateral rim mesh with a group of 306 patients (343 hips) who received IBG in the absence of a lateral rim mesh during the same period from 1988 to 2015. In the mesh group, there were 74 male and 183 female patients, with a mean age of 35 years (13 to 50). In the no-mesh group, there were 173 male and 170 female patients, with a mean age of 38 years (12.6 to 50). Cox regression analyses were performed to study the effect of a lateral rim mesh on acetabular component survival. Kaplan–Meier analyses with 95% confidence intervals (CIs) were performed to estimate the survival of the acetabular implant.Aims
Patients and Methods