We compared extrusion of the allograft after
medial and lateral meniscal allograft transplantation and examined
the correlation between the extent of extrusion and the clinical
outcome. A total of 73 lateral and 26 medial meniscus allografts
were evaluated by MRI at a mean of 32 months (24 to 59) in 99 patients
(67 men, 32 women) with a mean age of 35 years (21 to 52). The absolute
values and the proportional widths of extruded menisci as a percentage were
measured in coronal images that showed maximum extrusion. Functional
assessments were performed using Lysholm scores. The mean extrusion
was 4.7 mm (1.8 to 7.7) for lateral menisci and 2.9 mm (1.2 to 6.5)
for medial menisci (p <
0.001), and the mean percentage extrusions
were 52.0% (23.8% to 81.8%) and 31.2% (11.6% to 63.4%), respectively
(p <
0.001). Mean Lysholm scores increased significantly from
49.0 (10 to 83) pre-operatively to 86.6 (33 to 99) at final follow-up
for lateral menisci (p = 0.001) and from 50.9 (15 to 88) to 88.3
(32 to 100) for medial menisci (p <
0.001). The final mean Lysholm
scores were similar in the two groups (p = 0.312). Furthermore,
Lysholm scores were not found to be correlated with degree of extrusion
(p = 0.242). Thus, transplanted lateral menisci extrude more significantly
than transplanted medial menisci. However, the clinical outcome
after meniscal transplantation was not found to be adversely affected
by extrusion of the allograft.
The purpose of this study was to evaluate the
long-term functional and radiological outcomes of arthroscopic removal
of unstable osteochondral lesions with subchondral drilling in the
lateral femoral condyle. We reviewed the outcome of 23 patients
(28 knees) with stage III or IV osteochondritis dissecans lesions
of the lateral femoral condyle at a mean follow-up of 14 years (10
to 19). The functional clinical outcomes were assessed using the Lysholm
score, which improved from a mean of 38.1 ( We found radiological evidence of degenerative changes in the
third or fourth decade of life at a mean of 14 years after arthroscopic
excision of the loose body and subchondral drilling for an unstable
osteochondral lesion of the lateral femoral condyle. Clinical and
functional results were more satisfactory.
A number of causes have been advanced to explain the destructive discovertebral (Andersson) lesions that occur in ankylosing spondylitis, and various treatments have been proposed, depending on the presumed cause. The purpose of this study was to identify the causes of these lesions by defining their clinical and radiological characteristics. We retrospectively reviewed 622 patients with ankylosing spondylitis. In all, 33 patients (5.3%) had these lesions, affecting 100 spinal segments. Inflammatory lesions were found in 91 segments of 24 patients (3.9%) and traumatic lesions in nine segments of nine patients (1.4%). The inflammatory lesions were associated with recent-onset disease; a low modified Stoke ankylosing spondylitis spine score (mSASSS) due to incomplete bony ankylosis between vertebral bodies; multiple lesions; inflammatory changes on MRI; reversal of the inflammatory changes and central bony ankylosis at follow-up; and a good response to anti-inflammatory drugs. Traumatic lesions were associated with prolonged disease duration; a high mSASSS due to complete bony ankylosis between vertebral bodies; a previous history of trauma; single lesions; nonunion of fractures of the posterior column; acute kyphoscoliotic deformity with the lesion at the apex; instability, and the need for operative treatment due to that instability. It is essential to distinguish between inflammatory and traumatic Andersson lesions, as the former respond to medical treatment whereas the latter require surgery.
We have carried out prosthetic reconstruction in six patients with malignant or aggressively benign bone tumours of the distal tibia or fibula. The diagnoses were osteosarcoma in four patients, parosteal osteosarcoma in one and recurrent giant-cell tumour in one. Five tumours were in the distal tibia and one in the distal fibula. The mean duration of follow-up was 5.3 years (2.0 to 7.1). Reconstruction was achieved using custom-made, hinged prostheses which replaced the distal tibia and the ankle. The mean range of ankle movement after operation was 31° and the joints were stable. The average functional score according to the system of the International Society of Limb Salvage was 24.2 and five of the patients had a good outcome. Complications occurred in two with wound infection and talar collapse. All patients were free from neoplastic disease at the latest follow-up. Prosthetic reconstruction may be used for the treatment of malignant tumours of the distal tibia and fibula in selected patients.
Stable fixation after a corrective supracondylar osteotomy in adults is difficult because of the irregularity of the area of bony contact, displacement of the fragments, the predominance of cortical bone, and the need for early mobilisation. We have used the Ilizarov apparatus for fixation in 15 patients who were treated by complex osteotomies with displacement of fragments for cubitus varus or valgus. Most patients with cubitus varus required medial displacement with rotation of the distal fragment. Those with cubitus valgus required lateral shift of the distal fragment to reduce the medial prominence of the elbow that would otherwise result. All osteotomies united within the expected time without loss of correction, despite early mobilisation. Complications related to the fixation were few and had resolved at the long-term follow-up.