C5 nerve root palsy is a rare and potentially
debilitating complication of cervical spine surgery. Currently,
however, there are no guidelines to help surgeons to prevent or
treat this complication. We carried out a systematic review of the literature to identify
the causes of this complication and options for its prevention and
treatment. Searches of PubMed, Embase and Medline yielded 60 articles
for inclusion, most of which addressed C5 palsy as a complication
of surgery. Although many possible causes were given, most authors supported
posterior migration of the spinal cord with tethering of the nerve
root as being the most likely. Early detection and prevention of a C5 nerve root palsy using
neurophysiological monitoring and variations in surgical technique
show promise by allowing surgeons to minimise or prevent the incidence
of C5 palsy. Conservative treatment is the current treatment of
choice; most patients make a full recovery within two years. Cite this article:
Dysphagia is a common complication of anterior
surgery of the cervical spine. The incidence of post-operative dysphagia
may be as high as 71% within the first two weeks after surgery,
but gradually decreases during the following months. However, 12%
to 14% of patients may have some persistent dysphagia one year after
the procedure. It has been shown that female gender, advanced age,
multilevel surgery, longer operating time and severe pre-operative
neck pain may be risk factors. Although the aetiology remains unclear
and is probably multifactorial, proposed causes include oesophageal
retraction, prominence of the cervical plate and prevertebral swelling.
Recently, pre-operative tracheal traction exercises and the use
of retropharyngeal steroids have been proposed as methods of reducing
post-operative dysphagia. We performed a systematic review to assess the incidence, aetiology,
risk factors, methods of assessment and management of dysphagia
following anterior cervical spinal surgery. Cite this article:
There are three basic concepts that are important to the biomechanics of pedicle screw-based instrumentation. First, the outer diameter of the screw determines pullout strength, while the inner diameter determines fatigue strength. Secondly, when inserting a pedicle screw, the dorsal cortex of the spine should not be violated and the screws on each side should converge and be of good length. Thirdly, fixation can be augmented in cases of severe osteoporosis or revision. A trajectory parallel or caudal to the superior endplate can minimise breakage of the screw from repeated axial loading. Straight insertion of the pedicle screw in the mid-sagittal plane provides the strongest stability. Rotational stability can be improved by adding transverse connectors. The indications for their use include anterior column instability, and the correction of rotational deformity.