Advertisement for orthosearch.org.uk
Results 121 - 140 of 201
Results per page:
Bone & Joint 360
Vol. 6, Issue 6 | Pages 1 - 1
1 Dec 2017
Ollivere B


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation.

Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1600 - 1609
1 Dec 2014
Matharu GS Pynsent PB Sumathi VP Mittal S Buckley CD Dunlop DJ Revell PA Revell MP

We undertook a retrospective cohort study to determine clinical outcomes following the revision of metal-on-metal (MoM) hip replacements for adverse reaction to metal debris (ARMD), and to identify predictors of time to revision and outcomes following revision. Between 1998 and 2012 a total of 64 MoM hips (mean age at revision of 57.8 years; 46 (72%) female; 46 (72%) hip resurfacings and 18 (28%) total hip replacements) were revised for ARMD at one specialist centre. At a mean follow-up of 4.5 years (1.0 to 14.6) from revision for ARMD there were 13 hips (20.3%) with post-operative complications and eight (12.5%) requiring re-revision.

The Kaplan–Meier five-year survival rate for ARMD revision was 87.9% (95% confidence interval 78.9 to 98.0; 19 hips at risk). Excluding re-revisions, the median absolute Oxford hip score (OHS) following ARMD revision using the percentage method (0% best outcome and 100% worst outcome) was 18.8% (interquartile range (IQR) 7.8% to 48.3%), which is equivalent to 39/48 (IQR 24.8/48 to 44.3/48) when using the modified OHS. Histopathological response did not affect time to revision for ARMD (p = 0.334) or the subsequent risk of re-revision (p = 0.879). Similarly, the presence or absence of a contralateral MoM hip bearing did not affect time to revision for ARMD (p = 0.066) or the subsequent risk of re-revision (p = 0.178).

Patients revised to MoM bearings had higher rates of re-revision (five of 16 MoM hips re-revised; p = 0.046), but those not requiring re-revision had good functional results (median absolute OHS 14.6% or 41.0/48). Short-term morbidity following revision for ARMD was comparable with previous reports. Caution should be exercised when choosing bearing surfaces for ARMD revisions.

Cite this article: Bone Joint J 2014;96-B:1600–9.


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1172 - 1177
1 Sep 2014
Lawrence H Deehan D Holland J Kirby J Tyson-Capper A

Abnormal wear of cobalt-containing metal-on-metal joints is associated with inflammatory pseudotumours. Cobalt ions activate human toll-like receptor 4 (TLR4), which normally responds to bacterial lipopolysaccharide (LPS) in sepsis. Activation of TLR4 by LPS increases the expression of chemokines IL-8 and CXCL10, which recruit leukocytes and activated T-cells, respectively. This study was designed to determine whether cobalt induces a similar inflammatory response to LPS by promoting the expression of IL-8 and CXCL10. A human monocytic cell line, derived from acute monocytic leukaemia, was treated with cobalt ions and expression of IL-8 and CXCL10 measured at mRNA and protein levels. Cobalt-treated macrophages showed a 60-fold increase in IL-8 mRNA, and an eightfold increase in production of the mature chemokine (both p < 0.001); expression of the CXCL10 gene and protein was also significantly increased by cobalt (both p < 0.001). Experiments were also performed in the presence of CLI-095, a TLR4-specific antagonist which abrogated the cobalt-mediated increase in IL-8 and CXCL10 expression.

These findings suggest that cobalt ions induce inflammation similar to that observed during sepsis by the simultaneous activation of two TLR4-mediated signalling pathways. These pathways result in increased production of IL-8 and CXCL10, and may be implicated in pseudotumour formation following metal-on-metal replacement.

Cite this article: Bone Joint J 2014; 96-B:1172–7.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1126 - 1134
1 Aug 2012
Granchi D Cenni E Giunti A Baldini N

We report a systematic review and meta-analysis of the peer-reviewed literature focusing on metal sensitivity testing in patients undergoing total joint replacement (TJR). Our purpose was to assess the risk of developing metal hypersensitivity post-operatively and its relationship with outcome and to investigate the advantages of performing hypersensitivity testing.

We undertook a comprehensive search of the citations quoted in PubMed and EMBASE: 22 articles (comprising 3634 patients) met the inclusion criteria. The frequency of positive tests increased after TJR, especially in patients with implant failure or a metal-on-metal coupling. The probability of developing a metal allergy was higher post-operatively (odds ratio (OR) 1.52 (95% confidence interval (CI) 1.06 to 2.31)), and the risk was further increased when failed implants were compared with stable TJRs (OR 2.76 (95% CI 1.14 to 6.70)).

Hypersensitivity testing was not able to discriminate between stable and failed TJRs, as its predictive value was not statistically proven. However, it is generally thought that hypersensitivity testing should be performed in patients with a history of metal allergy and in failed TJRs, especially with metal-on-metal implants and when the cause of the loosening is doubtful.


Bone & Joint 360
Vol. 3, Issue 5 | Pages 33 - 35
1 Oct 2014

The October 2014 Research Roundup360 looks at: unpicking syndesmotic injuries: CT scans evaluated; surgical scrub suits and sterility in theatre; continuous passive motion and knee injuries; whether pain at night is melatonin related;venous thromboembolic disease following spinal surgery; clots in lower limb plasters; immune-competent cells in Achilles tendinopathy; and infection in orthopaedics.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1481 - 1487
1 Nov 2015
van der Veen HC Reininga IHF Zijlstra WP Boomsma MF Bulstra SK van Raay JJAM

We compared the incidence of pseudotumours after large head metal-on-metal (MoM) total hip arthroplasty (THA) with that after conventional metal-on-polyethylene (MoP) THA and assessed the predisposing factors to pseudotumour formation.

From a previous randomised controlled trial which compared large head (38 mm to 60 mm) cementless MoM THA with conventional head (28 mm) cementless MoP THA, 93 patients (96 THAs: 41 MoM (21 males, 20 females, mean age of 64 years, standard deviation (sd) 4) and 55 MoP (25 males, 30 females, mean age of 65 years, sd 5) were recruited after a mean follow-up of 50 months (36 to 64).

The incidence of pseudotumours, measured using a standardised CT protocol was 22 (53.7%) after MoM THA and 12 (21.8%) after MoP THA. Women with a MoM THA were more likely to develop a pseudotumour than those with a MoP THA (15 vs 7, odds ratio (OR) = 13.4, p < 0.001). There was a similar incidence of pseudotumours in men with MoM THAs and those with MoP THAs (7 vs 5, OR = 2.1, p = 0.30). Elevated cobalt levels (≥ 5 microgram/L) were only associated with pseudotumours in women with a MoM THA. There was no difference in mean Oxford and Harris hip scores between patients with a pseudotumour and those without.

Contrary to popular belief, pseudotumours occur frequently around MoP THAs. Women with a MoM THA and an elevated cobalt level are at greatest risk. In this study, pseudotumours had no effect on the functional outcome after either large head MoM or conventional MoP THA.

Cite this article: Bone Joint J 2015;97-B:1481–7.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.

Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.


Bone & Joint 360
Vol. 5, Issue 5 | Pages 25 - 27
1 Oct 2016


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1132 - 1137
1 Aug 2016
Lawendy A Bihari A Sanders DW Badhwar A Cepinskas G

Aims

Compartment syndrome results from increased intra-compartmental pressure (ICP) causing local tissue ischaemia and cell death, but the systemic effects are not well described. We hypothesised that compartment syndrome would have a profound effect not only on the affected limb, but also on remote organs.

Methods

Using a rat model of compartment syndrome, its systemic effects on the viability of hepatocytes and on inflammation and circulation were directly visualised using intravital video microscopy.


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1040 - 1044
1 Aug 2013
Kazi HA Perera JR Gillott E Carroll FA Briggs TWR

We prospectively assessed the efficacy of a ceramic-on-metal (CoM) hip bearing with uncemented acetabular and femoral components in which cobalt­–chrome acetabular liners and alumina ceramic heads were used.

The cohort comprised 94 total hip replacements (THRs) in 83 patients (38 women and 45 men) with a mean age of 58 years (42 to 70). Minimum follow-up was two years. All patients had pre- and post-operative assessment using the Western Ontario and McMaster Universities osteoarthritis index (WOMAC), Oxford hip score and Short-Form 12 scores. All showed a statistically significant improvement from three months post-operatively onwards (all p < 0.001).

After two years whole blood metal ion levels were measured and chromosomal analysis was performed. The levels of all metal ions were elevated except vanadium. Levels of chromium, cobalt, molybdenum and titanium were significantly higher in patients who underwent bilateral THR compared with those undergoing unilateral THR (p < 0.001). Chromosomal analysis demonstrated both structural and aneuploidy mutations. There were significantly more breaks and losses than in the normal population (p < 0.001). There was no significant difference in chromosomal aberration between those undergoing unilateral and bilateral procedures (all analyses p ≥ 0.62).

The use of a CoM THR is effective clinically in the short-term, with no concerns, but the significance of high metal ion levels and chromosomal aberrations in the long-term remains unclear.

Cite this article: Bone Joint J 2013;95-B:1040–44.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 370 - 378
1 Sep 2016
Munir S Oliver RA Zicat B Walter WL Walter WK Walsh WR

Objectives

This study aimed to characterise and qualitatively grade the severity of the corrosion particles released into the hip joint following taper corrosion.

Methods

The 26 cases examined were CoC/ABG Modular (n = 13) and ASR/SROM (n = 13). Blood serum metal ion levels were collected before and after revision surgery. The haematoxylin and eosin tissue sections were graded on the presence of fibrin exudates, necrosis, inflammatory cells and corrosion products. The corrosion products were identified based on visible observation and graded on abundance. Two independent observers blinded to the clinical patient findings scored all cases. Elemental analysis was performed on corrosion products within tissue sections. X-Ray diffraction was used to identify crystalline structures present in taper debris.


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 579 - 584
1 May 2016
Osman K Panagiotidou AP Khan M Blunn G Haddad FS

There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface.

We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice.

Cite this article: Bone Joint J 2016;98-B:579–84.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1427 - 1430
1 Oct 2011
Lindgren JU Brismar BH Wikstrom AC

A 70-year-old man with an uncemented metal-on-polyethylene total hip prosthesis underwent revision arthroplasty 33 months later because of pain, swelling and recurrent dislocation. There appeared to be corrosion and metal release from the prosthetic head, resulting in pseudotumour formation and severe local soft-tissue destruction. The corrosion occurred at the junction between the titanium-molybdenum-zirconium-iron taper and the cobalt-chrome-molybdenum head, but the mechanism was unproven.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 144 - 147
1 Nov 2013
Jones RE Russell RD Huo MH

Satisfactory primary wound healing following total joint replacement is essential. Wound healing problems can have devastating consequences for patients. Assessment of their healing capacity is useful in predicting complications. Local factors that influence wound healing include multiple previous incisions, extensive scarring, lymphoedema, and poor vascular perfusion. Systemic factors include diabetes mellitus, inflammatory arthropathy, renal or liver disease, immune compromise, corticosteroid therapy, smoking, and poor nutrition. Modifications in the surgical technique are necessary in selected cases to minimise potential wound complications. Prompt and systematic intervention is necessary to address any wound healing problems to reduce the risks of infection and other potential complications.

Cite this article: Bone Joint J 2013;95-B, Supple A:144–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 895 - 900
1 Jul 2012
Gill IPS Webb J Sloan K Beaver RJ

We present a series of 35 patients (19 men and 16 women) with a mean age of 64 years (36.7 to 75.9), who underwent total hip replacement using the ESKA dual-modular short stem with metal on-polyethylene bearing surfaces. This implant has a modular neck section in addition to the modular head. Of these patients, three presented with increasing post-operative pain due to pseudotumour formation that resulted from corrosion at the modular neck-stem junction. These patients underwent further surgery and aseptic lymphocytic vaculitis associated lesions were demonstrated on histological analysis.

Retrieval analysis of two modular necks showed corrosion at the neck-stem taper. Blood cobalt and chromium levels were measured at a mean of nine months (3 to 28) following surgery. These were compared with the levels in seven control patients (three men and four women) with a mean age of 53.4 years (32.1 to 64.1), who had an identical prosthesis and articulation but with a prosthesis that had no modularity at neck-stem junction. The mean blood levels of cobalt in the study group were raised at 50.75 nmol/l (5 to 145) compared with 5.6 nmol/l (2 to 13) in control patients.

Corrosion at neck-stem tapers has been identified as an important source of metal ion release and pseudotumour formation requiring revision surgery. Finite element modelling of the dual modular stem demonstrated high stresses at the modular stem-neck junction. Dual modular cobalt-chrome hip prostheses should be used with caution due to these concerns.


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims

Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone.

Methods

A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.