Advertisement for orthosearch.org.uk
Results 121 - 140 of 1778
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 3 | Pages 389 - 392
1 Apr 2003
Misra AN Hussain MRA Fiddian NJ Newton G

We randomised 129 knees which were to be replaced using a standard posterior-cruciate-ligament (PCL)-retaining cemented total knee replacement into two groups. In one the PCL was retained in the normal way and in the other it was resected. They were well matched, with a predominance of women, and a mean age of 67 years.

There was no statistically significant difference in the Hospital for Special Surgery scores at a mean of 57 months (56 to 60) between the two groups although 21 patients (24 knees) were lost to follow-up. Relief from pain, correction of deformity, range of movement, stability and strength were comparable in both. Radiological assessment showed femoral rollback in approximately 20% of knees with a slightly higher incidence in the PCL-resected group. There was no significant loosening detected in either group at review at two years.

At five years, one knee in the PCL-retained group had been revised because of infection and one patient in each group was awaiting revision for loosening.

Our findings have shown no significant difference in the five-year results for a PCL-retaining total knee replacement if the PCL is excised or preserved. This suggests two important points. First, the PCL is not functional in most patients with a total knee replacement even when retained. Secondly, patients with an excised PCL show a good result with a PCL-retaining implant, thereby questioning the need for a posterior stabilised design in such a situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1086 - 1086
1 Sep 2002
WRIGHT I


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 936 - 936
1 Sep 1999
Bollen S


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 3 | Pages 469 - 470
1 May 1992
Rao B Taraknath V Sista V


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 630 - 637
1 May 2012
Bourke HE Gordon DJ Salmon LJ Waller A Linklater J Pinczewski LA

The purpose of this study was to report the outcome of ‘isolated’ anterior cruciate ligament (ACL) ruptures treated with anatomical endoscopic reconstruction using hamstring tendon autograft at a mean of 15 years (14.25 to 16.9). A total of 100 consecutive men and 100 consecutive women with ‘isolated’ ACL rupture underwent four-strand hamstring tendon reconstruction with anteromedial portal femoral tunnel drilling and interference screw fixation by a single surgeon. Details were recorded pre-operatively and at one, two, seven and 15 years post-operatively. Outcomes included clinical examination, subjective and objective scoring systems, and radiological assessment. At 15 years only eight of 118 patients (7%) had moderate or severe osteo-arthritic changes (International Knee Documentation Committee Grades C and D), and 79 of 152 patients (52%) still performed very strenuous activities. Overall graft survival at 15 years was 83% (1.1% failure per year). Patients aged < 18 years at the time of surgery and patients with > 2 mm of laxity at one year had a threefold increase in the risk of suffering a rupture of the graft (p = 0.002 and p = 0.001, respectively). There was no increase in laxity of the graft over time.

ACL reconstructive surgery in patients with an ‘isolated’ rupture using this technique shows good results 15 years post-operatively with respect to ligamentous stability, objective and subjective outcomes, and does not appear to cause osteoarthritis.


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 2 | Pages 173 - 175
1 Mar 1994
Moyen B Lerat J


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 1 | Pages 149 - 150
1 Jan 1988
Savage R


The Journal of Bone & Joint Surgery British Volume
Vol. 37-B, Issue 3 | Pages 443 - 445
1 Aug 1955
Alldred AJ


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 777 - 777
1 Jul 2002
Dandy D


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 5 | Pages 827 - 828
1 Nov 1986
Kaelin A Hulin P Carlioz H

Instability of the knee is frequently found in association with congenital leg-length discrepancy. We have studied six such patients clinically, radiologically and arthroscopically. Clinical signs of knee instability and significant radiological changes were present in all, and at arthroscopy the anterior cruciate ligament was completely absent in four patients and functionless in the other two. This deficiency appears to be a congenital condition which may predispose to meniscus injury or retropatellar pain; it may also lead to subluxation or dislocation of the knee during leg-lengthening procedures.


The Journal of Bone & Joint Surgery British Volume
Vol. 64-B, Issue 1 | Pages 92 - 94
1 Feb 1982
Dandy D Pusey R


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 147 - 147
1 Jan 2002
FORSTER M


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 2 | Pages 327 - 328
1 Mar 1988
Aradi A Wong J Walsh M


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 5 | Pages 747 - 747
1 Nov 1986
Ross A Chesterman P


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 2 | Pages 225 - 230
1 Mar 1990
Staubli H Jakob R

We evaluated the accuracy of six clinical tests for posterior instability in 24 knees with acute surgically-proven posterior cruciate ligament injuries and intact anterior cruciate ligaments. We also performed stress radiography under anaesthesia. The gravity sign and the posterior drawer test in near extension and its passive reduction were diagnostic in 20 of the 24 knees, and the active reduction of posterior subluxation was diagnostic in 18. The reversed pivot shift sign helped to diagnose severe posterior and posterolateral subluxations, but the external rotation recurvatum test was negative in all 24 knees. Stress radiography in near extension revealed a highly significant increase in posterior tibial subluxation in the injured knees.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 335 - 342
19 Apr 2024
Athavale SA Kotgirwar S Lalwani R

Aims. The Chopart joint complex is a joint between the midfoot and hindfoot. The static and dynamic support system of the joint is critical for maintaining the medial longitudinal arch of the foot. Any dysfunction leads to progressive collapsing flatfoot deformity (PCFD). Often, the tibialis posterior is the primary cause; however, contrary views have also been expressed. The present investigation intends to explore the comprehensive anatomy of the support system of the Chopart joint complex to gain insight into the cause of PCFD. Methods. The study was conducted on 40 adult embalmed cadaveric lower limbs. Chopart joint complexes were dissected, and the structures supporting the joint inferiorly were observed and noted. Results. The articulating bones exhibit features like a cuboid shelf and navicular beak, which appear to offer inferior support to the joint. The expanse of the spring ligament complex is more medial than inferior, while the superomedial part is more extensive than the intermediate and inferoplantar parts. The spring ligament is reinforced by the tendons in the superomedial part (the main tendon of tibialis posterior), the inferomedial part (the plantar slip of tibialis posterior), and the master knot of Henry positioned just inferior to the gap between the inferomedial and inferoplantar bundles. Conclusion. This study highlights that the medial aspect of the talonavicular articulation has more extensive reinforcement in the form of superomedial part of spring ligament and tibialis posterior tendon. The findings are expected to prompt further research in weightbearing settings on the pathogenesis of flatfoot. Cite this article: Bone Jt Open 2024;5(4):335–342


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1226 - 1232
1 Nov 2023
Prijs J Rawat J ten Duis K IJpma FFA Doornberg JN Jadav B Jaarsma RL

Aims. Triplane ankle fractures are complex injuries typically occurring in children aged between 12 and 15 years. Classic teaching that closure of the physis dictates the overall fracture pattern, based on studies in the 1960s, has not been challenged. The aim of this paper is to analyze whether these injuries correlate with the advancing closure of the physis with age. Methods. A fracture mapping study was performed in 83 paediatric patients with a triplane ankle fracture treated in three trauma centres between January 2010 and June 2020. Patients aged younger than 18 years who had CT scans available were included. An independent Paediatric Orthopaedic Trauma Surgeon assessed all CT scans and classified the injuries as n-part triplane fractures. Qualitative analysis of the fracture pattern was performed using the modified Cole fracture mapping technique. The maps were assessed for both patterns and correlation with the closing of the physis until consensus was reached by a panel of six surgeons. Results. Fracture map grouped by age demonstrates that, regardless of age (even at the extremes of the spectrum), the fracture lines consolidate in a characteristic Y-pattern, and no shift with closure of the physis was observed. A second fracture map with two years added to female age also did not show a shift. The fracture map, grouped by both age and sex, shows a Y-pattern in all different groups. The fracture lines appear to occur between the anterior and posterior inferior tibiofibular ligaments, and the medially fused physis or deltoid ligament. Conclusion. This fracture mapping study reveals that triplane ankle fractures have a characteristic Y-pattern, and acknowledges the weakness created by the physis, however it also challenges classic teaching that the specific fracture pattern at the level of the joint of these injuries relies on advancing closure of the physis with age. Instead, this study observes the importance of ligament attachment in the fracture patterns of these injuries. Cite this article: Bone Joint J 2023;105-B(11):1226–1232


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 5 - 10
1 Jan 2023
Crowe CS Kakar S

Injury to the triangular fibrocartilage complex (TFCC) may result in ulnar wrist pain with or without instability. One component of the TFCC, the radioulnar ligaments, serve as the primary soft-tissue stabilizer of the distal radioulnar joint (DRUJ). Tears or avulsions of its proximal, foveal attachment are thought to be associated with instability of the DRUJ, most noticed during loaded pronosupination. In the absence of detectable instability, injury of the foveal insertion of the radioulnar ligaments may be overlooked. While advanced imaging techniques such as MRI and radiocarpal arthroscopy are well-suited for diagnosing central and distal TFCC tears, partial and complete foveal tears without instability may be missed without a high degree of suspicion. While technically challenging, DRUJ arthroscopy provides the most accurate method of detecting foveal abnormalities. In this annotation the spectrum of foveal injuries is discussed and a modified classification scheme is proposed. Cite this article: Bone Joint J 2023;105-B(1):5–10


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 59 - 66
1 Mar 2024
Karunaseelan KJ Nasser R Jeffers JRT Cobb JP

Aims. Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA. Methods. Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators. Results. Following initial exposure, the ischiofemoral ligament (7 to 8 o’clock) was the largest restrictor of exposure of the acetabulum, contributing to a mean 25% of overall external rotational restraint. The ischiofemoral ligament (10 to 12 o’clock) was the largest restrictor of exposure of the proximal femur, contributing to 25% of overall extension restraint. Releasing the short external rotators had minimal contribution in torque generated during joint exposure (≤ 5%). Conclusion. Adequate exposure of both proximal femur and acetabulum may be achieved with minimal torque by performing a full proximal circumferential capsulotomy while preserving short external rotators. The joint torque generated and exposure achieved is dependent on patient factors; therefore, some cases may necessitate further releases. Cite this article: Bone Joint J 2024;106-B(3 Supple A):59–66