We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.
We compared patient-reported outcomes of the Kinemax fixed- and mobile-bearing total knee replacement in a multi-centre randomised controlled trial. Patients were randomised to the fixed- or the mobile-bearing prosthesis via a sealed envelope method after the bone cuts had been made in the operating theatre. Randomisation was stratified by centre and diagnosis. Patients were assessed pre-operatively and at eight to 12 weeks, one year and two years post-operatively. Validated questionnaires were used which included the Western Ontario MacMasters University, Short-Form 12, Mental Health Index-5, Knee Injury and Osteoarthritis Outcome Score for Knee-Related Quality of Life and Function in Sport and Recreation scales and a validated scale of satisfaction post-operatively. In total, 242 patients (250 knees) with a mean age of 68 years (40 to 80) were recruited from four NHS orthopaedic centres. Of these, 132 patients (54.5%) were women. No statistically significant differences could be identified in any of the patient-reported outcome scores between patients who received the fixed-bearing or the mobile-bearing knee up to two-years post-operatively.