Patella subluxation assessed on dynamic MRI has
previously been shown to be associated with anterior knee pain. In
this MRI study of 60 patients we investigated the relationship between
subluxation and multiple bony, cartilaginous and soft-tissue factors
that might predispose to subluxation using discriminant function
analysis. Patella engagement (% of patella cartilage overlapping with trochlea
cartilage) had the strongest relationship with subluxation. Patellae
with >
30% engagement tended not to sublux; those with <
30%
tended to sublux. Other factors that were associated with subluxation
included the tibial tubercle-trochlea notch distance, vastus medialis obliquus
distance from patella, patella alta, and the bony and cartilaginous
sulcus angles in the superior part of the trochlea. No relationship
was found between subluxation and sulcus angles for cartilage and
bone in the middle and lower part of the trochlea, cartilage thicknesses
and Wiberg classification of the patella. This study indicates that patella engagement is a key factor
associated with patellar subluxation. This suggests that in patients
with anterior knee pain with subluxation, resistant to conservative
management, surgery directed towards improving patella engagement
should be considered. A clinical trial is necessary to test this
hypothesis.
Surgical dislocation of the hip in the treatment of acetabular fractures allows the femoral head to be safely displaced from the acetabulum. This permits full intra-articular acetabular and femoral inspection for the evaluation and potential treatment of cartilage lesions of the labrum and femoral head, reduction of the fracture under direct vision and avoidance of intra-articular penetration with hardware. We report 60 patients with selected types of acetabular fracture who were treated using this approach. Six were lost to follow-up and the remaining 54 were available for clinical and radiological review at a mean follow-up of 4.4 years (2 to 9). Substantial damage to the intra-articular cartilage was found in the anteromedial portion of the femoral head and the posterosuperior aspect of the acetabulum. Labral lesions were predominantly seen in the posterior acetabular area. Anatomical reduction was achieved in 50 hips (93%) which was considerably higher than that seen in previous reports. There were no cases of avascular necrosis. Four patients subsequently required total hip replacement. Good or excellent results were achieved in 44 hips (81.5%). The cumulative eight-year survivorship was 89.0% (95% confidence interval 84.5 to 94.1). Significant predictors of poor outcome were involvement of the acetabular dome and lesions of the femoral cartilage greater than grade 2. The functional mid-term results were better than those of previous reports. Surgical dislocation of the hip allows accurate reduction and a predictable mid-term outcome in the management of these difficult injuries without the risk of the development of avascular necrosis.
Autologous chondrocyte implantation (ACI) is a technique used for the treatment of symptomatic osteochondral defects of the knee. A variation of the original periosteum membrane technique is the matrix-induced autologous chondrocyte implantation (MACI) technique. The MACI membrane consists of a porcine type-I/III collagen bilayer seeded with chondrocytes. Osteochondral defects deeper than 8 to 10 mm usually require bone grafting either before or at the time of transplantation of cartilage. We have used a variation of Peterson’s ACI-periosteum sandwich technique using two MACI membranes with bone graft which avoids periosteal harvesting. The procedure is suture-free and requires less operating time and surgical exposure. We performed this MACI-sandwich technique on eight patients, five of whom were assessed at six months and one year post-operatively using the modified Cincinnati knee, the Stanmore functional rating and the visual analogue pain scores. All patients improved within six months with further improvement at one year. The clinical outcome was good or excellent in four after six months and one year. No significant graft-associated complications were observed. Our early results of the MACI-sandwich technique are encouraging although larger medium-term studies are required before there is widespread adoption of the technique.
We reviewed nine patients at a mean period of 11 years (6 to 16) after curettage and cementing of a giant-cell tumour around the knee to determine if there were any long-term adverse effects on the cartilage. Plain radiography, MRI, delayed gadolinium-enhanced MRI of the cartilage and measurement of the serum level of cartilage oligomeric matrix protein were carried out. The functional outcome was evaluated using the Lysholm knee score. Each patient was physically active and had returned to their previous occupation. Most participated in recreational sports or exercise. The mean Lysholm knee score was 92 (83 to 100). Only one patient was found to have cartilage damage adjacent to the cement. This patient had a history of intra-articular fracture and local recurrence, leading to degenerative changes. Interpretation of the data obtained from delayed gadolinium-enhanced MRI of the cartilage was difficult, with variation in the T1 values which did not correlate with the clinical or radiological findings. We did not find it helpful in the early diagnosis of degeneration of cartilage. We also found no obvious correlation between the serum cartilage oligomeric matrix protein level and the radiological and MR findings, function, time after surgery and the age of the patient. In summary, we found no evidence that the long-term presence of cement close to the knee joint was associated with the development of degenerative osteoarthritis.
We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis
The options for treatment of the young active patient with isolated symptomatic osteoarthritis of the medial compartment and pre-existing deficiency of the anterior cruciate ligament are limited. The potential longevity of the implant and levels of activity of the patient may preclude total knee replacement, and tibial osteotomy and unicompartmental knee arthroplasty are unreliable because of the ligamentous instability. Unicompartmental knee arthroplasties tend to fail because of wear or tibial loosening resulting from eccentric loading. Therefore, we combined reconstruction of the anterior cruciate ligament with unicompartmental arthroplasty of the knee in 15 patients (ACLR group), and matched them with 15 patients who had undergone Oxford unicompartmental knee arthroplasty with an intact anterior cruciate ligament (ACLI group). The clinical and radiological data at a minimum of 2.5 years were compared for both groups. The groups were well matched for age, gender and length of follow-up and had no significant differences in their pre-operative scores. At the last follow-up, the mean outcome scores for both the ACLR and ACLI groups were high (Oxford knee scores of 46 (37 to 48) and 43 (38 to 46), respectively, objective Knee Society scores of 99 (95 to 100) and 94 (82 to 100), and functional Knee Society scores of 96 and 96 (both 85 to 100). One patient in the ACLR group needed revision to a total knee replacement because of infection. No patient in either group had radiological evidence of component loosening. The radiological study showed no difference in the pattern of tibial loading between the groups. The short-term clinical results of combined anterior cruciate ligament reconstruction and unicompartmental knee arthroplasty are excellent. The previous shortcomings of unicompartmental knee arthroplasty in the presence of deficiency of the anterior cruciate ligament appear to have been addressed with the combined procedure. This operation seems to be a viable treatment option for young active patients with symptomatic arthritis of the medial compartment, in whom the anterior cruciate ligament has been ruptured.
In a randomised prospective study, 20 patients with intra-articular fractures of the distal radius underwent arthroscopically- and fluoroscopically-assisted reduction and external fixation plus percutaneous pinning. Another group of 20 patients with the same fracture characteristics underwent fluoroscopically-assisted reduction alone and external fixation plus percutaneous pinning. The patients were evaluated clinically and radiologically at follow-up of 24 months. The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire and modified Mayo wrist score were used at 3, 9, 12 and 24 months postoperatively. In the arthroscopically- and fluoroscopically-assisted group, triangular fibrocartilage complex tears were found in 12 patients (60%), complete or incomplete scapholunate ligament tears in nine (45%), and lunotriquetral ligament tears in four (20%). They were treated either arthroscopically or by open operation. Patients who underwent arthroscopically- and fluoroscopically-assisted treatment had significantly better supination, extension and flexion at all time points than those who had fluoroscopically-assisted surgery. The mean DASH scores were similar for both groups at 24 months, whereas the difference in the mean modified Mayo wrist scores remained statistically significant. Although the groups are small, it is clear that the addition of arthroscopy to the fluoroscopically-assisted treatment of intra-articular distal radius fractures improves the outcome. Better treatment of associated intra-articular injuries might also have been a reason for the improved outcome.
Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the articular chondrocytes. The object of this study was to characterise the regional variation in the viability of chondrocytes following joint trauma. A total of 29 osteochondral fragments from traumatic injuries to joints that could not be used in articular reconstruction were analysed for cell viability using the fluorescence live/dead assay and for apoptosis employing the TUNEL assay, and compared with cadaver control fragments. Chondrocyte death and apoptosis were significantly greater along the edge of the fracture and in the superficial zone of the osteochondral fragments. The middle and deep zones demonstrated significantly higher viability of the chondrocytes. These findings indicate the presence of both necrotic and apoptotic chondrocytes after joint injury and may provide further insight into the role of chondrocyte death in post-traumatic arthritis.
Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.
Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient
The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes. There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes
In this study a combination of autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS) was used and evaluated as a treatment option for the repair of large areas of degenerative articular cartilage. We present the results at three years post-operatively. Osteochondral cores were used to restore the contour of articular cartilage in 13 patients with large lesions of the lateral femoral condyle (n = 5), medial femoral condyle (n = 7) and patella (n = 1). Autologous cultured chondrocytes were injected underneath a periosteal patch covering the cores. After one year, the patients had a significant improvement in their symptoms and after three years this level of improvement was maintained in ten of the 13 patients. Arthroscopic examination revealed that the osteochondral cores became well integrated with the surrounding cartilage. We conclude that the hybrid ACI/OATS technique provides a promising surgical approach for the treatment of patients with large degenerative osteochondral defects.
We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p <
0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p <
0.05). These findings suggest that the repair of large
Recently, femoroacetabular impingement has been recognised as a cause of early osteoarthritis. There are two mechanisms of impingement: 1) cam impingement caused by a non-spherical head and 2) pincer impingement caused by excessive acetabular cover. We hypothesised that both mechanisms result in different patterns of articular damage. Of 302 analysed hips only 26 had an isolated cam and 16 an isolated pincer impingement. Cam impingement caused damage to the anterosuperior acetabular cartilage with separation between the labrum and cartilage. During flexion, the cartilage was sheared off the bone by the non-spherical femoral head while the labrum remained untouched. In pincer impingement, the cartilage damage was located circumferentially and included only a narrow strip. During movement the labrum is crushed between the acetabular rim and the femoral neck causing degeneration and ossification. Both cam and pincer impingement lead to osteoarthritis of the hip. Labral damage indicates ongoing impingement and rarely occurs alone.
Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p >
0.05), yet material properties were inferior (p <
0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.