Advertisement for orthosearch.org.uk
Results 1101 - 1120 of 5157
Results per page:
Bone & Joint 360
Vol. 10, Issue 6 | Pages 25 - 29
1 Dec 2021


Bone & Joint 360
Vol. 10, Issue 6 | Pages 15 - 18
1 Dec 2021


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims

Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques.

Methods

Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.


Bone & Joint 360
Vol. 10, Issue 6 | Pages 21 - 24
1 Dec 2021


Bone & Joint Open
Vol. 3, Issue 1 | Pages 93 - 97
10 Jan 2022
Kunze KN Orr M Krebs V Bhandari M Piuzzi NS

Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 364 - 369
10 Jul 2020
Aarvold A Lohre R Chhina H Mulpuri K Cooper A

Aims. Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel upright MRI scanner, to determine whether any deformation occurs in femoral heads affected by LCPD with weightbearing. Methods. Children affected by LCPD were recruited for analysis. Children received both standing weightbearing and supine scans in the MROpen upright MRI scanner, for coronal T1 GFE sequences, both hips in field of view. Parameters of femoral head height, width, and lateral extrusion of affected and unaffected hips were assessed by two independent raters, repeated at a one month interval. Inter- and intraclass correlation coefficients were determined. Standing and supine measurements were compared for each femoral head. Results. Following rigorous protocol development in healthy age-matched volunteers, successful scanning was performed in 11 LCPD-affected hips in nine children, with seven unaffected hips therefore available for comparison. Five hips were in early stage (1 and 2) and six were in late stage (3 and 4). The mean age was 5.3 years. All hips in early-stage LCPD demonstrated dynamic deformity on weightbearing. Femoral head height decreased (mean 1.2 mm, 12.4% decrease), width increased (mean 2.5 mm, 7.2% increase), and lateral extrusion increased (median 2.5 mm, 23% increase) on standing weightbearing MRI compared to supine scans. Negligible deformation was observed in contra-lateral unaffected hips, with less deformation observed in late-stage hips. Inter- and intraclass reliability for all measured parameters was good to excellent. Conclusion. This pilot study has described an effective novel research investigation for children with LCPD. Femoral heads in early-stage LCPD demonstrated dynamic deformity on weightbearing not previously seen, while unaffected hips did not. Expansion of this protocol will allow further translational study into the effects of loading hips with LCPD. Cite this article: Bone Joint Open 2020;1-7:364–369


Bone & Joint 360
Vol. 10, Issue 6 | Pages 48 - 50
1 Dec 2021
Evans JT French JMR Whitehouse MR


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. Methods. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs. Results. There was no evidence of cement attachment on any of the 11 Attune trays examined. There were significant differences between Ti and CoCr PFC Sigma implants and Attune designs (p < 0.05); however, there was no significant difference between CoCr PFC Sigma RP and Attune designs (p > 0.05). There were significant differences in the design features between the investigated designs (p < 0.05). Conclusion. The majority of the earliest PFC Sigma designs showed evidence of cement, while all of the retrieved Attune trays and the majority of the RP PFC trays in this study had no cement attached. This may be attributable to the design differences of these implants, in particular in relation to the cement pockets. Our results may help explain a controversial aspect related to cement attachment in a recently introduced TKA design. Cite this article: A. Cerquiglini, J. Henckel, H. Hothi, P. Allen, J. Lewis, A. Eskelinen, J. Skinner, M. T. Hirschmann, A. J. Hart. Analysis of the Attune tibial tray backside: A comparative retrieval study. Bone Joint Res 2019;8:136–145. DOI: 10.1302/2046-3758.83.BJJ-2018-0102.R2


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro. Methods. Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed. Results. Using LA or GC, especially triamcinolone acetonide, a dilution of 1:100 resulted in only a moderate reduction of viability, while a dilution of 1:10 showed significantly fewer cell counts. TA and CA reduced viability significantly at a dilution of 1:2. Higher dilutions did not affect viability. Notably, HA showed no effects of cytotoxicity in all drug dilutions. Conclusion. The toxicity of common intra-articular injectable drugs, assessed by cell viability, is mainly dependent on the dilution of the drug being tested. LA are particularly toxic, whereas HA did not affect cell viability. Cite this article: P. Busse, C. Vater, M. Stiehler, J. Nowotny, P. Kasten, H. Bretschneider, S. B. Goodman, M. Gelinsky, S. Zwingenberger. Cytotoxicity of drugs injected into joints in orthopaedics. Bone Joint Res 2019;8:41–48. DOI: 10.1302/2046-3758.82.BJR-2018-0099.R1


Bone & Joint Research
Vol. 11, Issue 1 | Pages 6 - 7
3 Jan 2022
Walter N Rupp M Baertl S Alt V


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 415 - 425
1 Apr 2019
Thewlis D Bahl JS Fraysse F Curness K Arnold JB Taylor M Callary S Solomon LB

Aims. The purpose of this exploratory study was to investigate if the 24-hour activity profile (i.e. waking activities and sleep) objectively measured using wrist-worn accelerometry of patients scheduled for total hip arthroplasty (THA) improves postoperatively. Patients and Methods. A total of 51 THA patients with a mean age of 64 years (24 to 87) were recruited from a single public hospital. All patients underwent THA using the same surgical approach with the same prosthesis type. The 24-hour activity profiles were captured using wrist-worn accelerometers preoperatively and at 2, 6, 12, and 26 weeks postoperatively. Patient-reported outcomes (Hip Disability and Osteoarthritis Outcome Score (HOOS)) were collected at all timepoints except two weeks postoperatively. Accelerometry data were used to quantify the intensity (sedentary, light, moderate, and vigorous activities) and frequency (bouts) of activity during the day and sleep efficiency. The analysis investigated changes with time and differences between Charnley class. Results. Patients slept or were sedentary for a mean of 19.5 hours/day preoperatively and the 24-hour activity pattern did not improve significantly postoperatively. Outside of sleep, the patients spent their time in sedentary activities for a mean of 620 minutes/day (. sd. 143) preoperatively and 641 minutes/day (. sd. 133) six months postoperatively. No significant improvements were observed for light, moderate, and vigorous intensity activities (p = 0.140, p = 0.531, and p = 0.407, respectively). Sleep efficiency was poor (< 85%) at all timepoints. There was no postoperative improvement in sleep efficiency when adjusted for medications (p > 0.05). Patient-reported outcome measures showed a significant improvement with time in all domains when compared with preoperative levels. There were no differences with Charnley class at six months postoperatively. However, Charnley class C patients were more sedentary at two weeks postoperatively when compared with Charnley class A patients (p < 0.05). There were no further differences between Charnley classifications. Conclusion. This study describes the 24-hour activity profile of THA patients for the first time. Prior to THA, patients in this cohort were inactive and slept poorly. This cohort shows no improvement in 24-hour activity profiles at six months postoperative. Cite this article: Bone Joint J 2019;101-B:415–425


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 530 - 538
1 Apr 2020
Rollick NC Gadinsky NE Klinger CE Kubik JF Dyke JP Helfet DL Wellman DS

Aims. Dual plating of distal femoral fractures with medial and lateral implants has been performed to improve construct mechanics and alignment, in cases where isolated lateral plating would be insufficient. This may potentially compromise vascularity, paradoxically impairing healing. This study investigates effects of single versus dual plating on distal femoral vascularity. Methods. A total of eight cadaveric lower limb pairs were arbitrarily assigned to either 1) isolated lateral plating, or 2) lateral and medial plating of the distal femur, with four specimens per group. Contralateral limbs served as matched controls. Pre- and post-contrast MRI was performed to quantify signal intensity enhancement in the distal femur. Further evaluation of intraosseous vascularity was done with barium sulphate infusion with CT scan imaging. Specimens were then injected with latex medium and dissection was completed to assess extraosseous vasculature. Results. Quantitative MRI revealed a mean reduction of 21.2% (SD 1.3%) of arterial contribution in the lateral plating group and 25.4% (SD 3.2%) in the dual plating group (p = 0.051); representing a mean decrease in arterial contribution of 4.2%. The only significant difference found between both experimental groups was regionally, at the lateral aspect of the distal femur with a mean drop in arterial contribution in the lateral plating group of 18.9% (SD 2.6%) versus 24.0% (SD 3.2%) in the dual plating group (p = 0.048), representing a mean decrease in arterial contribution of 5.1%. Gross dissection revealed complete destruction of periosteal vessels underneath either medial or lateral plates in both groups. The network of genicular branches contributing to the posterior and distal femoral condyles was preserved in all specimens. A medial vascular pedicle was found dividing from the superficial femoral artery at a mean 12.7 cm (SD 1.7) proximal to the medial epicondyle and was undisrupted in the dual plating group. Conclusion. Lateral locking-plate application resulted in mean 21.2% reduction in distal femur vascularity. Addition of medial plates did not further markedly decrease vascularity. As such, the majority of the vascular insult occurred with lateral plating alone. Supplemental medially based fixation did not lead to marked devascularization of the distal femur, and should therefore be considered in the setting of comminution and poor bone stock in distal femoral fractures. Further clinical research is required to confirm the results of this study. Cite this article: Bone Joint J 2020;102-B(4):530–538


Bone & Joint 360
Vol. 10, Issue 6 | Pages 45 - 46
1 Dec 2021


Bone & Joint 360
Vol. 10, Issue 6 | Pages 33 - 35
1 Dec 2021


Bone & Joint Open
Vol. 3, Issue 1 | Pages 12 - 19
3 Jan 2022
Salih S Grammatopoulos G Burns S Hall-Craggs M Witt J

Aims

The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC).

Methods

This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC.


Bone & Joint 360
Vol. 10, Issue 6 | Pages 29 - 32
1 Dec 2021


Bone & Joint Research
Vol. 7, Issue 2 | Pages 187 - 195
1 Feb 2018
Ziebart J Fan S Schulze C Kämmerer PW Bader R Jonitz-Heincke A

Objectives. Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed. Methods. Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated. Results. Live and dead cell numbers were higher after 25 µm sine and 50 µm triangle micromotions compared with loaded controls. Collagen type I synthesis was downregulated in respective samples. The metabolic activity and osteocalcin expression level were higher in samples treated with 25 µm micromotions compared with the loaded controls. Furthermore, static loading and micromotions decreased the osteoprotegerin/receptor activator of NF-κB ligand ratio. Conclusion. Our system enables investigation of the behaviour of bone cells at the bone-implant interface under shear stress induced by micromotions. We could demonstrate that micromotions applied under static pressure conditions have a significant impact on the activity of osteoblasts seeded on collagen scaffolds. In future studies, higher mechanical stress will be applied and different implant surface structures will be considered. Cite this article: J. Ziebart, S. Fan, C. Schulze, P. W. Kämmerer, R. Bader, A. Jonitz-Heincke. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018;7:187–195. DOI: 10.1302/2046-3758.72.BJR-2017-0228.R1


Bone & Joint Research
Vol. 8, Issue 1 | Pages 19 - 31
1 Jan 2019
Li M Zhang C Yang Y

Objectives. Many in vitro studies have investigated the mechanism by which mechanical signals are transduced into biological signals that regulate bone homeostasis via periodontal ligament fibroblasts during orthodontic treatment, but the results have not been systematically reviewed. This review aims to do this, considering the parameters of various in vitro mechanical loading approaches and their effects on osteogenic and osteoclastogenic properties of periodontal ligament fibroblasts. Methods. Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017. Results. A total of 26 studies from the 555 articles obtained via the database search were ultimately included, and four main types of biomechanical approach were identified. Compressive force is characterized by static and continuous application, whereas tensile force is mainly cyclic. Only nine studies investigated the mechanisms by which periodontal ligament fibroblasts transduce mechanical stimulus. The studies provided evidence from in vitro mechanical loading regimens that periodontal ligament fibroblasts play a unique and dominant role in the regulation of bone remodelling during orthodontic tooth movement. Conclusion. Evidence from the reviewed studies described the characteristics of periodontal ligament fibroblasts exposed to mechanical force. This is expected to benefit subsequent research into periodontal ligament fibroblasts and to provide indirectly evidence-based insights regarding orthodontic treatment. Further studies should be performed to explore the effects of static tension on cytomechanical properties, better techniques for static compressive force loading, and deeper analysis of underlying regulatory systems. Cite this article: M. Li, C. Zhang, Y. Yang. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: A systematic review of in vitro studies. Bone Joint Res 2019;8:19–31. DOI: 10.1302/2046-3758.81.BJR-2018-0060.R1


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 183 - 188
1 Jan 2022
van Sloten M Gómez-Junyent J Ferry T Rossi N Petersdorf S Lange J Corona P Araújo Abreu M Borens O Zlatian O Soundarrajan D Rajasekaran S Wouthuyzen-Bakker M

Aims

The aim of this study was to analyze the prevalence of culture-negative periprosthetic joint infections (PJIs) when adequate methods of culture are used, and to evaluate the outcome in patients who were treated with antibiotics for a culture-negative PJI compared with those in whom antibiotics were withheld.

Methods

A multicentre observational study was undertaken: 1,553 acute and 1,556 chronic PJIs, diagnosed between 2013 and 2018, were retrospectively analyzed. Culture-negative PJIs were diagnosed according to the Muskuloskeletal Infection Society (MSIS), International Consensus Meeting (ICM), and European Bone and Joint Society (EBJIS) definitions. The primary outcome was recurrent infection, and the secondary outcome was removal of the prosthetic components for any indication, both during a follow-up period of two years.


Bone & Joint Open
Vol. 3, Issue 1 | Pages 4 - 11
3 Jan 2022
Argyrou C Tzefronis D Sarantis M Kateros K Poultsides L Macheras GA

Aims

There is evidence that morbidly obese patients have more intra- and postoperative complications and poorer outcomes when undergoing total hip arthroplasty (THA) with the direct anterior approach (DAA). The aim of this study was to determine the efficacy of DAA for THA, and compare the complications and outcomes of morbidly obese patients with nonobese patients.

Methods

Morbidly obese patients (n = 86), with BMI ≥ 40 kg/m2 who underwent DAA THA at our institution between September 2010 and December 2017, were matched to 172 patients with BMI < 30 kg/m2. Data regarding demographics, set-up and operating time, blood loss, radiological assessment, Harris Hip Score (HHS), International Hip Outcome Tool (12-items), reoperation rate, and complications at two years postoperatively were retrospectively analyzed.