Advertisement for orthosearch.org.uk
Results 81 - 100 of 127
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 98 - 102
1 Nov 2013
Ibrahim MS Raja S Haddad FS

The increasing need for total hip replacement (THR) in an ageing population will inevitably generate a larger number of revision procedures. The difficulties encountered in dealing with the bone deficient acetabulum are amongst the greatest challenges in hip surgery. The failed acetabular component requires reconstruction to restore the hip centre and improve joint biomechanics. Impaction bone grafting is successful in achieving acetabular reconstruction using both cemented and cementless techniques. Bone graft incorporation restores bone stock whilst providing good component stability. We provide a summary of the evidence and current literature regarding impaction bone grafting using both cemented and cementless techniques in revision THR.

Cite this article: Bone Joint J 2013;95-B, Supple A:98–102.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 103 - 108
1 Nov 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein DJ Safir OA Gross AE

The conventional method for reconstructing acetabular bone loss at revision surgery includes using structural bone allograft. The disadvantages of this technique promoted the advent of metallic but biocompatible porous implants to fill bone defects enhancing initial and long-term stability of the acetabular component. This paper presents the indications, surgical technique and the outcome of using porous metal acetabular augments for reconstructing acetabular defects.

Cite this article: Bone Joint J 2013;95-B, Supple A:103–8.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 264 - 269
1 Dec 2013
Antoniades G Smith EJ Deakin AH Wearing SC Sarungi M

Objective

This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability.

Methods

Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests.


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1617 - 1625
1 Dec 2013
Schmitz MWJL Timmer C Rijnen WHC Gardeniers JWM Schreurs BW

Despite the worldwide usage of the cemented Contemporary acetabular component (Stryker), no published data are available regarding its use in patients aged < 50 years. We undertook a mid- to long-term follow-up study, including all consecutive patients aged < 50 years who underwent a primary total hip replacement using the Contemporary acetabular component with the Exeter cemented stem between January 1999 and January 2006. There were 152 hips in 126 patients, 61 men and 65 women, mean age at surgery 37.6 years (16 to 49 yrs). One patient was lost to follow-up.

Mean clinical follow-up of all implants was 7.6 years (0.9 to 12.0). All clinical questionnaire scores, including Harris hip score, Oxford hip score and several visual analogue scales, were found to have improved. The eight year survivorship of all acetabular components for the endpoints revision for any reason or revision for aseptic loosening was 94.4% (95% confidence interval (CI) 89.2 to 97.2) and 96.4% (95% CI 91.6 to 98.5), respectively. Radiological follow-up was complete for 146 implants. The eight year survival for the endpoint radiological loosening was 93.1% (95% CI 86.2 to 96.6). Three surviving implants were considered radiologically loose but were asymptomatic. The presence of acetabular osteolysis (n = 17, 11.8%) and radiolucent lines (n = 20, 13.9%) in the 144 surviving cups indicates a need for continued observation in the second decade of follow-up in order to observe their influence on long-term survival.

The clinical and radiological data resulting in a ten-year survival rate > 90% in young patients support the use of the Contemporary acetabular component in this specific patient group.

Cite this article: Bone Joint J 2013;95-B:1617–25.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 164 - 172
1 Feb 2015
Grammatopoulos G Thomas GER Pandit H Beard DJ Gill HS Murray DW

We assessed the orientation of the acetabular component in 1070 primary total hip arthroplasties with hard-on-soft, small diameter bearings, aiming to determine the size and site of the target zone that optimises outcome. Outcome measures included complications, dislocations, revisions and ΔOHS (the difference between the Oxford Hip Scores pre-operatively and five years post-operatively). A wide scatter of orientation was observed (2sd 15°). Placing the component within Lewinnek’s zone was not associated withimproved outcome. Of the different zone sizes tested (± 5°, ± 10° and ± 15°), only ± 15° was associated with a decreased rate of dislocation. The dislocation rate with acetabular components inside an inclination/anteversion zone of 40°/15° ± 15° was four times lower than those outside. The only zone size associated with statistically significant and clinically important improvement in OHS was ± 5°. The best outcomes (ΔOHS > 26) were achieved with a 45°/25° ± 5° zone.

This study demonstrated that with traditional technology surgeons can only reliably achieve a target zone of ±15°. As the optimal zone to diminish the risk of dislocation is also ±15°, surgeons should be able to achieve this. This is the first study to demonstrate that optimal orientation of the acetabular component improves the functional outcome. However, the target zone is small (± 5°) and cannot, with current technology, be consistently achieved.

Cite this article: Bone Joint J 2015;97-B:164–72.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 732 - 737
1 Jun 2013
Kosuge D Yamada N Azegami S Achan P Ramachandran M

The term developmental dysplasia of the hip (DDH) describes a spectrum of disorders that results in abnormal development of the hip joint. If not treated successfully in childhood, these patients may go on to develop hip symptoms and/or secondary osteoarthritis in adulthood. In this review we describe the altered anatomy encountered in adults with DDH along with the management options, and the challenges associated with hip arthroscopy, osteotomies and arthroplasty for the treatment of DDH in young adults.

Cite this article: Bone Joint J 2013;95-B:732–7.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 884 - 888
1 Jul 2014
Insull PJ Cobbett H Frampton CM Munro JT

We compared the rate of revision for instability after total hip replacement (THR) when lipped and non-lipped acetabular liners were used. We hypothesised that the use of a lipped liner in a modular uncemented acetabular component reduces the risk of revision for instability after primary THR. Using data from the New Zealand Joint Registry, we found that the use of a lipped liner was associated with a significantly decreased rate of revision for instability and for all other indications. Adjusting for the size of the femoral head, the surgical approach and the age and gender of the patient, this difference remained strongly significant (p < 0.001).

We conclude that evidence from the New Zealand registry suggests that the use of lipped liners with modular uncemented acetabular components is associated with a decreased rate of revision for instability after primary THR.

Cite this article: Bone Joint J 2014;96-B:884–8.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 160 - 165
1 Feb 2013
McDonnell SM Boyce G Baré J Young D Shimmin AJ

Noise generation has been reported with ceramic-on-ceramic articulations in total hip replacement (THR). This study evaluated 208 consecutive Delta Motion THRs at a mean follow-up of 21 months (12 to 35). There were 141 women and 67 men with a mean age of 59 years (22 to 84). Patients were reviewed clinically and radiologically, and the incidence of noise was determined using a newly described assessment method. Noise production was examined against range of movement, ligamentous laxity, patient-reported outcome scores, activity level and orientation of the acetabular component. There were 143 silent hips (69%), 22 (11%) with noises other than squeaking, 17 (8%) with unreproducible squeaking and 26 (13%) with reproducible squeaking. Hips with reproducible squeaking had a greater mean range of movement (p < 0.001) and mean ligament laxity (p = 0.004), smaller median head size (p = 0.01) and decreased mean acetabular component inclination (p = 0.02) and anteversion angle (p = 0.02) compared with the other groups. There was no relationship between squeaking and age (p = 0.13), height (p = 0.263), weight (p = 0.333), body mass index (p = 0.643), gender (p = 0.07) or patient outcome score (p = 0.422). There were no revisions during follow-up. Despite the surprisingly high incidence of squeaking, all patients remain satisfied with their hip replacement.

Cite this article: Bone Joint J 2013;95-B:160–5.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1604 - 1610
1 Dec 2012
Angadi DS Brown S Crawfurd EJP

The aim of this prospective randomised study was to compare the clinical and radiological results of a cemented all-polyethylene Ultima acetabular component with those of a cementless porous-coated acetabular component (PFC) following total hip replacement (THR). A total of 287 patients received either a polyethylene acetabular component (group A) or a cobalt–chromium porous-coated component (group B) with an identical cemented femoral component and 28 mm cobalt-chromium head, thus making it the largest study of its type. Patients were evaluated radiologically and clinically using the Harris hip score (HHS). Group A comprised 183 patients (73 male, 110 female) with a mean age of 71.3 years (55 to 89). Group B comprised 104 patients (48 male, 56 female) with a mean age of 69.8 years (56 to 89). A total of 16 patients (13 in Group A, three in Group B) did not have post-operative data for analysis. The mean follow-up in group A was 7.52 years (0.4 to 15.0) and in Group B 7.87 years (0.5 to 14.0).

At final follow-up the mean HHS was similar between groups A and B (74.5 (25 to 100) and 78.0 (37 to 100), respectively; p = 0.068). The total number of revisions for any cause was 28, 17 of which were in group A and 11 in group B. The ten-year survivorship was 86.8% (95% confidence interval (CI) 78.4 to 92.1) and 89.2% (95% CI 78.3 to 94.8) for groups A and B, respectively (log-rank p-value = 0.938). A total of 20 cemented and two cementless acetabular components had evidence of acetabular radiolucencies or acetabular component migration at last follow-up (p = 0.001).

These results indicate that patients with a cemented all-polyethylene and cementless porous-coated polyethylene lined acetabular component have similar long-term clinical outcomes.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1290 - 1297
1 Oct 2014
Grammatopoulos G Pandit HG da Assunção R McLardy-Smith P De Smet KA Gill HS Murray DW

There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (. sd. 6°)/ 19° (. sd. 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (. sd . 5°)/ -8° (. sd.  8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (. sd.  2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (. sd . 7°). This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 . sd. about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph. Cite this article: Bone Joint J 2014;96-B:1290–7


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1339 - 1343
1 Oct 2012
Cross MB Dolan MM Sidhu GS Nguyen J Mayman DJ Su EP

The purpose of this study was to compare the amount of acetabular bone removed during hip resurfacing (HR) and cementless total hip replacement (THR), after controlling for the diameter of the patient’s native femoral head. Based on a power analysis, 64 consecutive patients (68 hips) undergoing HR or THR were prospectively enrolled in the study. The following data were recorded intra-operatively: the diameter of the native femoral head, the largest reamer used, the final size of the acetabular component, the size of the prosthetic femoral head and whether a decision was made to increase the size of the acetabular component in order to accommodate a larger prosthetic femoral head. Results were compared using two-sided, independent samples Student’s t-tests. A statistically significant difference was seen in the mean ratio of the size of the acetabular component to the diameter of the native femoral head (HR: 1.05 (sd 0.04) versus THR: 1.09 (sd 0.05); p <  0.001) and largest acetabular reamer used to the diameter of the native femoral head (HR: 1.03 (sd 0.04) versus THR: 1.09 (sd 0.05); p < 0.001). The ratios varied minimally when the groups were subdivided by gender, age and obesity. The decision to increase the size of the acetabular component to accommodate a larger femoral head occurred more often in the THR group (27% versus 9%). Despite the emphasis on avoiding damage to the femoral neck during HR, the ratio of the size of the acetabular component to the diameter of the native femoral head was larger in cementless THR than in HR.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 319 - 323
1 Mar 2008
Moonot P Singh PJ Cronin MD Kalairajah YE Kavanagh TG Field RE

Hip resurfacing is a bone-conserving procedure with respect to proximal femoral resection, but there is debate in the literature as to whether the same holds true for the acetabulum. We have investigated whether the Birmingham hip resurfacing conserves acetabular bone.

Between 1998 and 2005, 500 Birmingham hip resurfacings were performed by two surgeons. Between 1996 and 2005 they undertook 700 primary hip replacements, with an uncemented acetabular component. These patients formed the clinical material to compare acetabular component sizing. The Birmingham hip resurfacing group comprised 350 hips in men and 150 hips in women. The uncemented total hip replacement group comprised 236 hips in men and 464 hips in women. Age- and gender-matched analysis of a cohort of patients for the sizes of the acetabular components required for the two types of replacement was also undertaken. Additionally, an analysis of the sizes of the components used by each surgeon was performed.

For age-matched women, the mean outside diameter of the Birmingham hip resurfacing acetabular components was 2.03 mm less than that of the acetabular components in the uncemented total hip replacements (p < 0.0001). In similarly matched men there was no significant difference (p = 0.77). A significant difference was also found between the size of acetabular components used by the two surgeons for Birmingham hip resurfacing for both men (p = 0.0015) and women (p = 0.001). In contrast, no significant difference was found between the size of acetabular components used by the two surgeons for uncemented total hip replacement in either men or women (p = 0.06 and p = 0.14, respectively). This suggests that variations in acetabular preparation also influence acetabular component size in hip resurfacing.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 310 - 313
1 Mar 2005
Buckley SC Stockley I Hamer AJ Kerry RM

We report the results of the revision of 123 acetabular components for aseptic loosening treated by impaction bone grafting using frozen, morsellised, irradiated femoral heads and cemented sockets. This is the first large series using this technique to be reported. A survivorship of 88% with revision as the end-point after a mean of five years is comparable with that of other series.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 307 - 314
1 Mar 2011
Matthies A Underwood R Cann P Ilo K Nawaz Z Skinner J Hart AJ

This study compared component wear rates and pre-revision blood metal ions levels in two groups of failed metal-on-metal hip arthroplasties: hip resurfacing and modular total hip replacement (THR).

There was no significant difference in the median rate of linear wear between the groups for both acetabular (p = 0.4633) and femoral (p = 0.0872) components. There was also no significant difference in the median linear wear rates when failed hip resurfacing and modular THR hips of the same type (ASR and Birmingham hip resurfacing (BHR)) were compared.

Unlike other studies of well-functioning hips, there was no significant difference in pre-revision blood metal ion levels between hip resurfacing and modular THR.

Edge loading was common in both groups, but more common in the resurfacing group (67%) than in the modular group (57%). However, this was not significant (p = 0.3479). We attribute this difference to retention of the neck in resurfacing of the hip, leading to impingement-type edge loading. This was supported by visual evidence of impingement on the femur.

These findings show that failed metal-on-metal hip resurfacing and modular THRs have similar component wear rates and are both associated with raised pre-revision blood levels of metal ions.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1036 - 1044
1 Aug 2012
Penny JO Brixen K Varmarken JE Ovesen O Overgaard S

It is accepted that resurfacing hip replacement preserves the bone mineral density (BMD) of the femur better than total hip replacement (THR). However, no studies have investigated any possible difference on the acetabular side.

Between April 2007 and March 2009, 39 patients were randomised into two groups to receive either a resurfacing or a THR and were followed for two years. One patient’s resurfacing subsequently failed, leaving 19 patients in each group.

Resurfaced replacements maintained proximal femoral BMD and, compared with THR, had an increased bone mineral density in Gruen zones 2, 3, 6, and particularly zone 7, with a gain of 7.5% (95% confidence interval (CI) 2.6 to 12.5) compared with a loss of 14.6% (95% CI 7.6 to 21.6). Resurfacing replacements maintained the BMD of the medial femoral neck and increased that in the lateral zones between 12.8% (95% CI 4.3 to 21.4) and 25.9% (95% CI 7.1 to 44.6).

On the acetabular side, BMD was similar in every zone at each point in time. The mean BMD of all acetabular regions in the resurfaced group was reduced to 96.2% (95% CI 93.7 to 98.6) and for the total hip replacement group to 97.6% (95% CI 93.7 to 101.5) (p = 0.4863). A mean total loss of 3.7% (95% CI 1.0 to 6.5) and 4.9% (95% CI 0.8 to 9.0) of BMD was found above the acetabular component in W1 and 10.2% (95% CI 0.9 to 19.4) and 9.1% (95% CI 3.8 to 14.4) medial to the implant in W2 for resurfaced replacements and THRs respectively. Resurfacing resulted in a mean loss of BMD of 6.7% (95% CI 0.7 to 12.7) in W3 but the BMD inferior to the acetabular component was maintained in both groups.

These results suggest that the ability of a resurfacing hip replacement to preserve BMD only applies to the femoral side.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 196 - 201
1 Feb 2010
Hallan G Dybvik E Furnes O Havelin LI

The Norwegian Arthroplasty Register has shown that several designs of uncemented femoral stems give good or excellent survivorship. The overall findings for uncemented total hip replacement however, have been disappointing because of poor results with the use of metal-backed acetabular components. In this study, we exclusively investigated the medium-to long-term performance of primary uncemented metal-backed acetabular components.

A total of 9113 primary uncemented acetabular components were implanted in 7937 patients between 1987 and 2007. These were included in a prospective, population-based observational study. All the implants were modular and metal-backed with ultra-high-molecular-weight polyethylene liners. The femoral heads were made of stainless steel, cobalt-chrome (CoCr) alloy or alumina ceramic. In all, seven different designs of acetabular component were evaluated by the Kaplan-Meier survivorship method and Cox regression analysis.

Most acetabular components performed well up to seven years. When the endpoint was revision of the acetabular component because of aseptic loosening, the survival ranged between 87% and 100% at ten years. However, when the endpoint was revision for any reason, the survival estimates were 81% to 92% for the same implants at ten years. Aseptic loosening, wear, osteolysis and dislocation were the main reasons for the relatively poor overall performance of the acetabular components. Prostheses with alumina heads performed slightly better than those with stainless steel or CoCr alloy in subgroups.

Whereas most acetabular components performed well at seven years, the survivorship declined with longer follow-up. Fixation was generally good. None of the metal-backed uncemented acetabular components with ultra-high-molecular-weight polyethylene liners in our study had satisfactory long-term results because of high rates of wear, osteolysis, aseptic loosening and dislocation.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1326 - 1331
1 Oct 2013
Eilander W Harris SJ Henkus HE Cobb JP Hogervorst T

Orientation of the acetabular component influences wear, range of movement and the incidence of dislocation after total hip replacement (THR). During surgery, such orientation is often referenced to the anterior pelvic plane (APP), but APP inclination relative to the coronal plane (pelvic tilt) varies substantially between individuals. In contrast, the change in pelvic tilt from supine to standing (dPT) is small for nearly all individuals. Therefore, in THR performed with the patient supine and the patient’s coronal plane parallel to the operating table, we propose that freehand placement of the acetabular component placement is reliable and reflects standing (functional) cup position. We examined this hypothesis in 56 hips in 56 patients (19 men) with a mean age of 61 years (29 to 80) using three-dimensional CT pelvic reconstructions and standing lateral pelvic radiographs. We found a low variability of acetabular component placement, with 46 implants (82%) placed within a combined range of 30° to 50° inclination and 5° to 25° anteversion. Changing from the supine to the standing position (analysed in 47 patients) was associated with an anteversion change < 10° in 45 patients (96%). dPT was < 10° in 41 patients (87%). In conclusion, supine THR appears to provide reliable freehand acetabular component placement. In most patients a small reclination of the pelvis going from supine to standing causes a small increase in anteversion of the acetabular component.

Cite this article: Bone Joint J 2013;95-B:1326–31.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1021 - 1026
1 Aug 2011
Kalteis T Sendtner E Beverland D Archbold PA Hube R Schuster T Renkawitz T Grifka J

Orientation of the native acetabular plane as defined by the transverse acetabular ligament (TAL) and the posterior labrum was measured intra-operatively using computer-assisted navigation in 39 hips. In order to assess the influence of alignment on impingement, the range of movement was calculated for that defined by the TAL and the posterior labrum and compared with a standard acetabular component position (abduction 45°/anteversion 15°).

With respect to the registration of the plane defined by the TAL and the posterior labrum, there was moderate interobserver agreement (r = 0.64, p < 0.001) and intra-observer reproducibility (r = 0.73, p < 0.001). The mean acetabular component orientation achieved was abduction of 41° (32° to 51°) and anteversion of 18° (−1° to 36°). With respect to the Lewinnek safe zone (abduction 40° ±10°, anteversion 15° ±10°), 35 of the 39 acetabular components were within this zone. However, there was no improvement in the range of movement (p = 0.94) and no significant difference in impingement (p = 0.085).

Alignment of the acetabular component with the TAL and the posterior labrum might reduce the variability of acetabular component placement in total hip replacement. However, there is only a moderate interobserver agreement and intra-observer reliability in the alignment of the acetabular component using the TAL and the posterior labrum. No reduction in impingement was found when the acetabular component was aligned with the TAL and the posterior labrum, compared with a standard acetabular component position.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement.

We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 859 - 864
1 Jul 2009
Gwynne-Jones DP Garneti N Wainwright C Matheson JA King R

We reviewed the results at nine to 13 years of 125 total hip replacements in 113 patients using the monoblock uncemented Morscher press-fit acetabular component. The mean age at the time of operation was 56.9 years (36 to 74). The mean clinical follow-up was 11 years (9.7 to 13.5) and the mean radiological follow-up was 9.4 years (7.7 to 13.1). Three hips were revised, one immediately for instability, one for excessive wear and one for deep infection.

No revisions were required for aseptic loosening. A total of eight hips (7.0%) had osteolytic lesions greater than 1 cm, in four around the acetabular component (3.5%). One required bone grafting behind a well-fixed implant. The mean wear rate was 0.11 mm/year (0.06 to 0.78) and was significantly higher in components with a steeper abduction angle.

Kaplan-Meier survival curves at 13 years showed survival of 96.8% (95% confidence interval 90.2 to 99.0) for revision for any cause and of 95.7% (95% confidence interval 88.6 to 98.4) for any acetabular re-operation.