Smart trials are total knee tibial trial liners
with load bearing and alignment sensors that will graphically show quantitative
compartment load-bearing forces and component track patterns. These
values will demonstrate asymmetrical ligament balancing and misalignments
with the medial retinaculum temporarily closed. Currently surgeons
use feel and visual estimation of imbalance to assess soft-tissue
balancing and tracking with the medial retinaculum open, which results
in lower medial compartment loads and a wider anteroposterior tibial
tracking pattern. The sensor trial will aid the total knee replacement
surgeon in performing soft-tissue balancing by providing quantitative
visual feedback of changes in forces while performing the releases
incrementally. Initial experience using a smart tibial trial is
presented.
The Oxford mobile-bearing unicompartmental knee
replacement (UKR) is an effective and safe treatment for osteoarthritis
of the medial compartment. The results in the lateral compartment
have been disappointing due to a high early rate of dislocation
of the bearing. A series using a newly designed domed tibial component
is reported. The first 50 consecutive domed lateral Oxford UKRs in 50 patients
with a mean follow-up of three years (2.0 to 4.3) were included.
Clinical scores were obtained prospectively and Kaplan-Meier survival
analysis was performed for different endpoints. Radiological variables
related to the position and alignment of the components were measured. One patient died and none was lost to follow-up. The cumulative
incidence of dislocation was 6.2% (95% confidence interval (CI)
2.0 to 17.9) at three years. Survival using revision for any reason
and aseptic revision was 94% (95% CI 82 to 98) and 96% (95% CI 85
to 99) at three years, respectively. Outcome scores, visual analogue
scale for pain and maximum knee flexion showed a significant improvement
(p <
0.001). The mean Oxford knee score was 43 ( Clinical results are excellent and short-term survival has improved
when compared with earlier series. The risk of dislocation remains
higher using a mobile-bearing UKR in the lateral compartment when
compared with the medial compartment. Patients should be informed
about this complication. To avoid dislocations, care must be taken
not to elevate the lateral joint line.
The purpose of this study was to evaluate the
change in sagittal tibiotalar alignment after total ankle arthroplasty (TAA)
for osteoarthritis and to investigate factors affecting the restoration
of alignment. This retrospective study included 119 patients (120 ankles) who
underwent three component TAA using the Hintegra prosthesis. A total
of 63 ankles had anterior displacement of the talus before surgery
(group A), 49 had alignment in the normal range (group B), and eight
had posterior displacement of the talus (group C). Ankles in group
A were further sub-divided into those in whom normal alignment was
restored following TAA (41 ankles) and those with persistent displacement
(22 ankles). Radiographic and clinical results were assessed. Pre-operatively, the alignment in group A was significantly more
varus than that in group B, and the posterior slope of the tibial
plafond was greater (p <
0.01 in both cases). The posterior slope
of the tibial component was strongly associated with restoration
of alignment: ankles in which the alignment was restored had significantly
less posterior slope (p <
0.001). An anteriorly translated talus was restored to a normal position
after TAA in most patients. We suggest that surgeons performing
TAA using the Hintegra prosthesis should aim to insert the tibial
component at close to 90° relative to the axis of the tibia, hence
reducing posterior soft-tissue tension and allowing restoration
of normal tibiotalar alignment following surgery. Cite this article:
The advent of computer-assisted knee replacement surgery has focused interest on the alignment of the components. However, there is confusion at times between the alignment of the limb as a whole and that of the components. The interaction between them is discussed in this article. Alignment is expressed relative to some reference axis or plane and measurements will vary depending on what is selected as the reference. The validity of different reference axes is discussed. Varying prosthetic alignment has direct implications for surrounding soft-tissue tension. In this context the interaction between alignment and soft-tissue balance is explored and the current knowledge of the relationship between alignment and outcome is summarised.
Substantial healthcare resources have been devoted
to computer navigation and patient-specific instrumentation systems
that improve the reproducibility with which neutral mechanical alignment
can be achieved following total knee replacement (TKR). This choice of
alignment is based on the long-held tenet that the alignment of
the limb post-operatively should be within 3° of a neutral mechanical
axis. Several recent studies have demonstrated no significant difference
in survivorship when comparing well aligned Review of the literature suggests that a neutral mechanical axis
remains the optimal guide to alignment. Cite this article:
The amount of anteroposterior laxity required for a good range of movement and knee function in a cruciate-retaining total knee replacement (TKR) continues to be debated. We undertook a retrospective study to evaluate the effects of anteroposterior laxity on the range of movement and knee function in 55 patients following the e-motion cruciate-retaining TKR with a minimum follow-up of two years. The knees were divided into stable (anteroposterior translation, ≤ 10 mm, 38 patients) and unstable (anteroposterior translation, >
10 mm, 17) groups based on the anteroposterior laxity, measured using stress radiographs. We compared the Hospital for Special Surgery (HSS) scores, the Western Ontario MacMasters University Osteoarthritis (WOMAC) index, weight-bearing flexion, non-weight-bearing flexion and the reduction of flexion under weight-bearing There were no differences between the stable and unstable groups with regard to the mean HHS and WOMAC total scores, as well as weight-bearing and non-weight-bearing flexion (p = 0.277, p = 0.082, p = 0.095 and p = 0.646, respectively). However, the stable group had a better WOMAC function score and less delta flexion than the unstable group (p = 0.011 and p = 0.005, respectively). Our results suggest that stable knees with laxity ≤ 10 mm have a good functional outcome and less reduction of flexion under weight-bearing conditions than unstable knees with laxity >
10 mm following an e-motion cruciate-retaining TKR.
The cementless Oxford unicompartmental knee replacement
has been demonstrated to have superior fixation on radiographs and
a similar early complication rate compared with the cemented version.
However, a small number of cases have come to our attention where,
after an apparently successful procedure, the tibial component subsides into
a valgus position with an increased posterior slope, before becoming
well-fixed. We present the clinical and radiological findings of
these six patients and describe their natural history and the likely
causes. Two underwent revision in the early post-operative period,
and in four the implant stabilised and became well-fixed radiologically with
a good functional outcome. This situation appears to be avoidable by minor modifications
to the operative technique, and it appears that it can be treated
conservatively in most patients. Cite this article:
We performed a CT-based computer simulation study
to determine how the relationship between any inbuilt posterior
slope in the proximal tibial osteotomy and cutting jig rotational
orientation errors affect tibial component alignment in total knee
replacement. Four different posterior slopes (3°, 5°, 7° and 10°),
each with a rotational error of 5°, 10°, 15°, 20°, 25° or 30°, were
simulated. Tibial cutting block malalignment of 20° of external
rotation can produce varus malalignment of 2.4° and 3.5° with a
7° and a 10° sloped cutting jig, respectively. Care must be taken in
orientating the cutting jig in the sagittal plane when making a
posterior
Valgus high tibial osteotomy for osteoarthritis of the medial compartment of the knee can be performed using medial opening- and lateral closing-wedge techniques. The latter have been thought to offer greater initial stability. We measured and compared the stability of opening- and closing-wedge osteotomies fixed by TomoFix plates using radiostereometry in a series of 42 patients in a prospective, randomised clinical trial. There were no differences between the opening- and closing-wedge groups in the time to regain knee function and full weight-bearing. Pain and knee function were significantly improved in both groups without any differences between them. All the osteotomies united within one year. Radiostereometry showed no clinically relevant movement of bone or differences between either group. Medial opening-wedge high tibial osteotomy secured by a TomoFix plate offers equal stability to a lateral closing-wedge technique. Both give excellent initial stability and provide significantly improved knee function and reduction in pain, although the opening-wedge technique was more likely to produce the intended correction.
Achieving deep flexion after total knee replacement remains a challenge. In this study we compared the soft-tissue tension and tibiofemoral force in a mobile-bearing posterior cruciate ligament-sacrificing total knee replacement, using equal flexion and extension gaps, and with the gaps increased by 2 mm each. The tests were conducted during passive movement in five cadaver knees, and measurements of strain were made simultaneously in the collateral ligaments. The tibiofemoral force was measured using a customised mini-force plate in the tibial tray. Measurements of collateral ligament strain were not very sensitive to changes in the gap ratio, but tibiofemoral force measurements were. Tibiofemoral force was decreased by a mean of 40% (
We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans. The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group. The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group. The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group. The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment.
We carried out a prospective investigation into
the radiological outcomes of uncemented Oxford medial compartment
unicondylar replacement in 220 consecutive patients (231 knees)
performed in a single centre with a minimum two-year follow-up.
The functional outcomes using the mean Oxford knee score and the
mean high-activity arthroplasty score were significantly improved
over the pre-operative scores (p <
0.001). There were 196 patients
with a two-year radiological examination performed under fluoroscopic
guidance, aiming to provide images acceptable for analysis of the
bone–implant interface. Of the six tibial zones examined on each
knee on the anteroposterior radiograph, only three had a partial
radiolucent line. All were in the medial aspect of the tibial base plate
(zone 1) and all measured <
1 mm. All of these patients were
asymptomatic. There were no radiolucent lines seen around the femoral
component or on the lateral view. There was one revision for loosening
at one year due to initial inadequate seating of the tibial component.
These results confirm that the early uncemented Oxford medial unicompartmental
compartmental knee replacements were reliable and the incidence
of radiolucent lines was significantly decreased compared with the
reported results of cemented versions of this implant. These independent
results confirm those of the designing centre.
We retrospectively reviewed the records of 1150
computer-assisted total knee replacements and analysed the clinical
and radiological outcomes of 45 knees that had arthritis with a
pre-operative recurvatum deformity. The mean pre-operative hyperextension
deformity of 11° (6° to 15°), as measured by navigation at the start
of the operation, improved to a mean flexion deformity of 3.1° (0°
to 7°) post-operatively. A total of 41 knees (91%) were managed
using inserts ≤ 12.5 mm thick, and none had mediolateral laxity
>
2 mm from a mechanical axis of 0° at the end of the surgery. At
a mean follow-up of 26.4 months (13 to 48) there was significant
improvement in the mean Knee Society, Oxford knee and Western Ontario
and McMaster Universities Osteoarthritis Index scores compared with
the pre-operative values. The mean knee flexion improved from 105°
(80° to 125°) pre-operatively to 131° (120° to 145°), and none of
the limbs had recurrent recurvatum. These early results show that total knee replacement using computer
navigation and an algorithmic approach for arthritic knees with
a recurvatum deformity can give excellent radiological and functional
outcomes without recurrent deformity.
This prospective study compares the outcome of
157 hydroxyapatite (HA)-coated tibial components with 164 cemented
components in the ROCC Rotating Platform total knee replacement
in 291 patients. The mean follow-up was 7.6 years (5.2 to 11). There
were two revisions for loosening: one for an HA-coated and one for
a cemented tibial component. Radiological evaluation demonstrated
no radiolucent lines with the HA-coated femoral components. A total
of three HA-coated tibial components exhibited radiolucent lines
at three months post-operatively and these disappeared after three
further months of protected weight-bearing. With HA-coated components
the operating time was shorter (p <
0.006) and the radiological
assessment of the tibial interface was more stable (p <
0.01).
Using revision for aseptic loosening of the tibial component as
the end point, the survival rates at nine years was identical for
both groups at 99.1%. Our results suggest that HA-coated components perform at least
as well as the same design with cemented components and compare
favourably with those of series describing cemented or porous-coated
knee replacements, suggesting that fixation of both components with
hydroxyapatite is a reliable option in primary total knee replacement.
As part of the national initiative to reduce
waiting times for joint replacement surgery in Wales, the Cardiff
and Vale NHS Trust referred 224 patients to the NHS Treatment Centre
in Weston-Super-Mare for total knee replacement (TKR). A total of
258 Kinemax TKRs were performed between November 2004 and August
2006. Of these, a total of 199 patients (232 TKRs, 90%) have been
followed up for five years. This cohort was compared with 258 consecutive
TKRs in 250 patients, performed at Cardiff and Vale Orthopaedic
Centre (CAVOC) over a similar time period. The five year cumulative
survival rate was 80.6% (95% confidence interval (CI) 74.0 to 86.0)
in the Weston-Super-Mare cohort and 95.0% (95% CI 90.2 to 98.2)
in the CAVOC cohort with revision for any reason as the endpoint.
The relative risk for revision at Weston-Super-Mare compared with
CAVOC was 3.88 (p <
0.001). For implants surviving five years,
the mean Oxford knee scores (OKS) and mean EuroQol (EQ-5D) scores
were similar (OKS: Weston-Super-Mare 29 (2 to 47) The results show a higher revision rate for patients operated
at Weston-Super-Mare Treatment Centre, with a reduction in functional
outcome and quality of life after revision. This further confirms
that patients moved from one area to another for joint replacement
surgery fare poorly.
The requirement for release of collateral ligaments to achieve a stable, balanced total knee replacement has been reported to arise in about 50% to 100% of procedures. This wide range reflects a lack of standardised quantitative indicators to determine the necessity for a release. Using recent advances in computerised navigation, we describe two navigational predictors which provide quantitative measures that can be used to identify the need for release. The first was the ability to restore the mechanical axis before any bone resection was performed and the second was the discrepancy in the measured medial and lateral joint spaces after the tibial osteotomy, but before any femoral resection. These predictors showed a significant association with the need for collateral ligament release (p <
0.001). The first predictor using the knee stress test in extension showed a sensitivity of 100% and a specificity of 98% and the second, the difference between medial and lateral gaps in millimetres, a sensitivity of 83% and a specificity of 95%. The use of the two navigational predictors meant that only ten of the 93 patients required collateral ligament release to achieve a stable, neutral knee.
Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques. Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.