We present the early clinical and radiological results of Articular Surface Replacement (ASR) resurfacings in 214 hips (192 patients) with a mean follow-up of 43 months (30 to 57). The mean age of the patients was 56 years (28 to 74) and 85 hips (40%) were in 78 women. The mean Harris hip score improved from 52 (11 to 81) to 95 (27 to 100) at two years and the mean University of California, Los Angeles activity score from 3.9 (1 to 10) to 7.4 (2 to 10) in the same period. Narrowing of the neck (to a maximum of 9%) was noted in 124 of 209 hips (60%). There were 12 revisions (5.6%) involving four (1.9%) early fractures of the femoral neck and two (0.9%) episodes of collapse of the femoral head secondary to avascular necrosis. Six patients (2.8%) had failure related to metal wear debris. The overall survival for our series was 93% (95% confidence interval 80 to 98) and 89% (95% confidence interval 82 to 96) for hips with acetabular components smaller than 56 mm in diameter. The ASR implant has a lower diametrical clearance and a subhemispherical acetabular component when compared with other more frequently implanted metal-on-metal hip resurfacings. These changes may contribute to the higher failure rate than in other series, compared with other designs. Given our poor results with the small components we are no longer implanting the smaller size.
We present the clinical and radiological results of percutaneous vertebroplasty in the treatment of 58 vertebral compression fractures in 51 patients at a minimum follow-up of two years. Group 1 consisted of 39 patients, in whom there was no associated intravertebral cleft, whilst group 2 comprised 12 patients with an intravertebral cleft. The Oswestry disability index (ODI) and visual analogue scale (VAS) scores were recorded prospectively. The radiological evidence of kyphotic deformity, vertebral height, leakage of cement and bone resorption around the cement were studied restrospectively, both before and after operation and at the final follow-up. The ODI and VAS scores in both groups decreased after treatment, but the mean score in group 2 was higher than that in group 1 (p = 0.02 (ODI), p = 0.02 (VAS)). There was a greater initial correction of the kyphosis in group 2 than in group 1, although the difference was not statistically significant. However, loss of correction was greater in group 2. Leakage of cement was seen in 24 (41.4%) of 58 vertebrae (group 1, 32.6% (15 of 46); group 2, 75% (9 of 12)), mainly of type B through the basal vertebral vein in group 1 and of type C through the cortical defect in group 2. Resorption of bone around the cement was seen in three vertebrae in group 2 and in one in group 1. There were seven adjacent vertebral fractures in group 1 and one in group 2. Percutaneous vertebroplasty is an effective treatment for osteoporotic compression fractures with or without an intravertebral cleft. Nonetheless, higher rates of complications related to the cement must be recognised in patients in the presence of an intravertebral cleft.
The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone.