The use of robots in orthopaedic surgery is an
emerging field that is gaining momentum. It has the potential for significant
improvements in surgical planning, accuracy of component implantation
and patient safety. Advocates of robot-assisted systems describe
better patient outcomes through improved pre-operative planning
and enhanced execution of surgery. However, costs, limited availability,
a lack of evidence regarding the efficiency and safety of such systems
and an absence of long-term high-impact studies have restricted
the widespread implementation of these systems. We have reviewed
the literature on the efficacy, safety and current understanding of
the use of robotics in orthopaedics. Cite this article:
Accurate placement of the acetabular component during total hip
arthroplasty (THA) is an important factor in the success of the
procedure. However, the reported accuracy varies greatly and is
dependent upon whether free hand or navigated techniques are used.
The aim of this study was to assess the accuracy of an instrument
system that incorporates 3D printed, patient-specific guides designed
to optimise the placement of the acetabular component. A total of 100 consecutive patients were prospectively enrolled
and the accuracy of placement of the acetabular component was measured
using post-operative CT scans.Aims
Patients and Methods
Robots have been used in surgery since the late
1980s. Orthopaedic surgery began to incorporate robotic technology
in 1992, with the introduction of ROBODOC, for the planning and
performance of total hip replacement. The use of robotic systems
has subsequently increased, with promising short-term radiological
outcomes when compared with traditional orthopaedic procedures.
Robotic systems can be classified into two categories: autonomous
and haptic (or surgeon-guided). Passive surgery systems, which represent
a third type of technology, have also been adopted recently by orthopaedic
surgeons. While autonomous systems have fallen out of favour, tactile systems
with technological improvements have become widely used. Specifically,
the use of tactile and passive robotic systems in unicompartmental
knee replacement (UKR) has addressed some of the historical mechanisms
of failure of non-robotic UKR. These systems assist with increasing
the accuracy of the alignment of the components and produce more
consistent ligament balance. Short-term improvements in clinical
and radiological outcomes have increased the popularity of robot-assisted
UKR. Robot-assisted orthopaedic surgery has the potential for improving
surgical outcomes. We discuss the different types of robotic systems
available for use in orthopaedics and consider the indication, contraindications
and limitations of these technologies.