Advertisement for orthosearch.org.uk
Results 61 - 70 of 70
Results per page:
Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives

The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery.

Materials and Methods

Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 162 - 168
1 May 2016
Athanasou NA

Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles.

Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162–168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 370 - 378
1 Sep 2016
Munir S Oliver RA Zicat B Walter WL Walter WK Walsh WR

Objectives

This study aimed to characterise and qualitatively grade the severity of the corrosion particles released into the hip joint following taper corrosion.

Methods

The 26 cases examined were CoC/ABG Modular (n = 13) and ASR/SROM (n = 13). Blood serum metal ion levels were collected before and after revision surgery. The haematoxylin and eosin tissue sections were graded on the presence of fibrin exudates, necrosis, inflammatory cells and corrosion products. The corrosion products were identified based on visible observation and graded on abundance. Two independent observers blinded to the clinical patient findings scored all cases. Elemental analysis was performed on corrosion products within tissue sections. X-Ray diffraction was used to identify crystalline structures present in taper debris.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 283 - 288
1 Feb 2015
Gupta S Maclean M Anderson JG MacGregor SJ Meek RMD Grant MH

High-intensity narrow-spectrum (HINS) light is a novel violet-blue light inactivation technology which kills bacteria through a photodynamic process, and has been shown to have bactericidal activity against a wide range of species. Specimens from patients with infected hip and knee arthroplasties were collected over a one-year period (1 May 2009 to 30 April 2010). A range of these microbial isolates were tested for sensitivity to HINS-light. During testing, suspensions of the pathogens were exposed to increasing doses of HINS-light (of 123mW/cm2 irradiance). Non-light exposed control samples were also used. The samples were then plated onto agar plates and incubated at 37°C for 24 hours before enumeration. Complete inactivation (greater than 4-log10 reduction) was achieved for all of the isolates. The typical inactivation curve showed a slow initial reaction followed by a rapid period of inactivation. The doses of HINS-light required ranged between 118 and 2214 J/cm2. Gram-positive bacteria were generally found to be more susceptible than Gram-negative.

As HINS-light uses visible wavelengths, it can be safely used in the presence of patients and staff. This unique feature could lead to its possible use in the prevention of infection during surgery and post-operative dressing changes.

Cite this article: Bone Joint J 2015;97-B:283–8.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 539 - 543
1 Apr 2015
Lawendy A Bihari A Sanders DW McGarr G Badhwar A Cepinskas G

Compartment syndrome, a devastating consequence of limb trauma, is characterised by severe tissue injury and microvascular perfusion deficits. We hypothesised that leucopenia might provide significant protection against microvascular dysfunction and preserve tissue viability. Using our clinically relevant rat model of compartment syndrome, microvascular perfusion and tissue injury were directly visualised by intravital video microscopy in leucopenic animals. We found that while the tissue perfusion was similar in both groups (38.8% (standard error of the mean (sem) 7.1), 36.4% (sem 5.7), 32.0% (sem 1.7), and 30.5% (sem 5.35) continuously-perfused capillaries at 45, 90, 120 and 180 minutes compartment syndrome, respectively versus 39.2% (sem 8.6), 43.5% (sem 8.5), 36.6% (sem 1.4) and 50.8% (sem 4.8) at 45, 90, 120 and 180 minutes compartment syndrome, respectively in leucopenia), compartment syndrome-associated muscle injury was significantly decreased in leucopenic animals (7.0% (sem 2.0), 7.0%, (sem 1.0), 9.0% (sem 1.0) and 5.0% (sem 2.0) at 45, 90, 120 and 180 minutes of compartment syndrome, respectively in leucopenia group versus 18.0% (sem 4.0), 23.0% (sem 4.0), 32.0% (sem 7.0), and 20.0% (sem 5.0) at 45, 90, 120 and 180 minutes of compartment syndrome in control, p = 0.0005). This study demonstrates that the inflammatory process should be considered central to the understanding of the pathogenesis of cellular injury in compartment syndrome.

Cite this article: Bone Joint J 2015;97-B:539–43


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 252 - 257
1 Feb 2015
Wafa H Grimer RJ Reddy K Jeys L Abudu A Carter SR Tillman RM

We conducted a case-control study to examine the merit of silver-coated tumour prostheses. We reviewed 85 patients with Agluna-treated (silver-coated) tumour implants treated between 2006 and 2011 and matched them with 85 control patients treated between 2001 and 2011 with identical, but uncoated, tumour prostheses.

In all, 106 men and 64 women with a mean age of 42.2 years (18.4 to 90.4) were included in the study. There were 50 primary reconstructions (29.4%); 79 one-stage revisions (46.5%) and 41 two-stage revisions for infection (24.1%).

The overall post-operative infection rate of the silver-coated group was 11.8% compared with 22.4% for the control group (p = 0.033, chi-square test). A total of seven of the ten infected prostheses in the silver-coated group were treated successfully with debridement, antibiotics, and implant retention compared with only six of the 19 patients (31.6%) in the control group (p = 0.048, chi-square test). Three patients in the silver-coated group (3.5%) and 13 controls (15.3%) had chronic periprosthetic infection (p = 0.009, chi-square test).

The overall success rates in controlling infection by two-stage revision in the silver-coated group was 85% (17/20) compared with 57.1% (12/21) in the control group (p = 0.05, chi-square test). The Agluna-treated endoprostheses were associated with a lower rate of early periprosthetic infection. These silver-treated implants were particularly useful in two-stage revisions for infection and in those patients with incidental positive cultures at the time of implantation of the prosthesis.

Debridement with antibiotic treatment and retention of the implant appeared to be more successful with silver-coated implants.

Cite this article: Bone Joint J 2015;97-B:252–7.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 678 - 682
1 May 2013
Holinka J Pilz M Kubista B Presterl E Windhager R

The aim of this study was to evaluate whether coating titanium discs with selenium in the form of sodium selenite decreased bacterial adhesion of Staphylococcus aureus and Staph. epidermidis and impeded osteoblastic cell growth.

In order to evaluate bacterial adhesion, sterile titanium discs were coated with increasing concentrations of selenium and incubated with bacterial solutions of Staph. aureus (ATCC 29213) and Staph. epidermidis (DSM 3269) and stained with Safranin-O. The effect of selenium on osteoblastic cell growth was also observed. The adherence of MG-63 cells on the coated discs was detected by staining with Safranin-O. The proportion of covered area was calculated with imaging software.

The tested Staph. aureus strain showed a significantly reduced attachment on titanium discs with 0.5% (p = 0.011) and 0.2% (p = 0.02) selenium coating. Our test strain from Staph. epidermidis showed a highly significant reduction in bacterial adherence on discs coated with 0.5% (p = 0.0099) and 0.2% (p = 0.002) selenium solution. There was no inhibitory effect of the selenium coating on the osteoblastic cell growth.

Selenium coating is a promising method to reduce bacterial attachment on prosthetic material.

Cite this article: Bone Joint J 2013;95-B:678–82.


Bone & Joint 360
Vol. 1, Issue 5 | Pages 30 - 32
1 Oct 2012

The October 2012 Research Roundup360 looks at: whether you can escape your genes; oral prophylaxis for DVT; non-responders and the internet; metal-on-metal, mice and damaged livers; sleeping on the job; cartilage contact stress in the normal human hip; and a perfect reason to subscribe to 360.


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 4 - 9
1 Jan 2013
Goyal N Miller A Tripathi M Parvizi J

Staphylococcus aureus is one of the leading causes of surgical site infection (SSI). Over the past decade there has been an increase in methicillin-resistant S. aureus (MRSA). This is a subpopulation of the bacterium with unique resistance and virulence characteristics. Nasal colonisation with either S. aureus or MRSA has been demonstrated to be an important independent risk factor associated with the increasing incidence and severity of SSI after orthopaedic surgery. Furthermore, there is an economic burden related to SSI following orthopaedic surgery, with MRSA-associated SSI leading to longer hospital stays and increased hospital costs. Although there is some controversy about the effectiveness of screening and eradication programmes, the literature suggests that patients should be screened and MRSA-positive patients treated before surgical admission in order to reduce the risk of SSI.

Cite this article: Bone Joint J 2013;95-B:4–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 567 - 573
1 May 2007
Keegan GM Learmonth ID Case CP

The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the release, dissemination, uptake, biological activity, and potential toxicity of metal wear debris released from alloys currently used in modern orthopaedics. The introduction of risk assessment for the evaluation of metal alloys and their use in arthroplasty patients is discussed and this should include potential harmful effects on immunity, reproduction, the kidney, developmental toxicity, the nervous system and carcinogenesis.