Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the
Aims. Cementless unicompartmental knee arthroplasty (UKA) has advantages over cemented UKA, including improved fixation, but has a higher risk of tibial plateau fracture, particularly in Japanese patients. The aim of this multicentre study was to determine when cementless
Aims. Aseptic loosening of the
Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and
Aims. Cementless total knee arthroplasty (TKA) offers the potential for strong biological fixation compared with cemented TKA where fixation is achieved by the mechanical integration of the cement. Few mid-term results are available for newer cementless TKA designs, which have used additive manufacturing (3D printing). The aim of this study was to present mid-term clinical outcomes and implant survivorship of the cementless Stryker Triathlon Tritanium TKA. Methods. This was a single institution registry review of prospectively gathered data from 341 cementless Triathlon Tritanium TKAs at four to 6.8 years follow-up. Outcomes were determined by comparing pre- and postoperative Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS JR) scores, and pre- and postoperative 12-item Veterans RAND/Short Form Health Survey (VR/SF-12) scores. Aseptic loosening and revision for any reason were the endpoints which were used to determine survivorship at five years. Results. At mid-term follow-up, the mean KOOS JR score improved significantly from 33.14 (0 t0 85, standard deviation (SD) 21.88) preoperatively to 84.12 (15.94 to 100, SD 20.51) postoperatively (p < 0.001), the mean VR/SF-12 scores improved significantly from physical health (PH), 31.21 (SD 5.32; 23.99 to 56.77) preoperatively to 42.62 (SD 10.72; 19.38 to 56.82) postoperatively (p < 0.001) and the mental health (MH), 38.15 (SD 8.17; 19.06 to 60.75) preoperatively to 55.09 (SD 9.64; 19.06 to 66.98) postoperatively (p < 0.001). A total of 11 revisions were undertaken, with an overall revision rate of 2.94%, including five for periprosthetic joint infection (1.34%), three for loosening (0.80%), two for instability (0.53%), and one for pain (0.27%). The overall survivorship was 97.06% and survivorship for aseptic loosening as the endpoint was 98.40%, with a 99.5% survivorship of the 3D-printed
Aims. The aim of this study was to establish the results of isolated exchange of the tibial polyethylene insert in revision total knee arthroplasty (RTKA) in patients with well-fixed femoral or
Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of
Aims. Uncemented mobile bearing designs in medial unicompartmental knee arthroplasty (UKA) have seen an increase over the last decade. However, there are a lack of large-scale studies comparing survivorship of these specific designs to commonly used cemented mobile and fixed bearing designs. The aim of this study was to evaluate the survivorship of these designs. Methods. A total of 21,610 medial UKAs from 2007 to 2018 were selected from the Dutch Arthroplasty Register. Multivariate Cox regression analyses were used to compare uncemented mobile bearings with cemented mobile and fixed bearings. Adjustments were made for patient and surgical factors, with their interactions being considered. Reasons and type of revision in the first two years after surgery were assessed. Results. In hospitals performing less than 100 cases per year, cemented mobile bearings reported comparable adjusted risks of revision as uncemented mobile bearings. However, in hospitals performing more than 100 cases per year, the adjusted risk of revision was higher for cemented mobile bearings compared to uncemented mobile bearings (hazard ratio 1.78 (95% confidence interval 1.34 to 2.35)). The adjusted risk of revision between cemented fixed bearing and uncemented mobile bearing was comparable, independent of annual hospital volume. In addition, 12.3% of uncemented mobile bearing, 20.3% of cemented mobile bearing, and 41.5% of uncemented fixed bearing revisions were for
Aims. Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. Methods. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship. Results. A total of 720 of 754 primary TKAs (95.5%) were included with a mean follow-up of 3.9 years (SD 1.3); 562 (78.1%) were cruciate-retaining and 158 (21.9%) were posterior-stabilized. A total of 11 (1.5%) required reoperation for periprosthetic joint infection and seven (1.0%) for aseptic tibial loosening (five cruciate-retaining, two posterior-stabilized). Loosening occurred at a mean of 3.3 years (0.9 to 6.5). There were no cases of loosening in the 33 patients who received a 14 mm × 30 mm tibial stem extension. All-cause survivorship was 96.6% at three years (95% confidence interval (CI) 95.3% to 98.0%) and 96.2% at five years (95% CI 94.8% to 97.7%). Survivorship with revision for aseptic loosening was 99.6% at three years (95% CI 99.1% to 100.0%) and 99.1% at five years (95% CI 98.4% to 99.9%).
Aims. Limited evidence is available on mid-term outcomes of robotic-arm assisted (RA) partial knee arthroplasty (PKA). Therefore, the purpose of this study was to evaluate mid-term survivorship, modes of failure, and patient-reported outcomes of RA PKA. Methods. A retrospective review of patients who underwent RA PKA between June 2007 and August 2016 was performed. Patients received a fixed-bearing medial or lateral unicompartmental knee arthroplasty (UKA), patellofemoral arthroplasty (PFA), or bicompartmental knee arthroplasty (BiKA; PFA plus medial UKA). All patients completed a questionnaire regarding revision surgery, reoperations, and level of satisfaction. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed using the KOOS for Joint Replacement Junior survey. Results. Mean follow-up was 4.7 years (2.0 to 10.8). Five-year survivorship of medial UKA (n = 802), lateral UKA (n = 171), and PFA/BiKA (n = 35/10) was 97.8%, 97.7%, and 93.3%, respectively. Component loosening and progression of osteoarthritis (OA) were the most common reasons for revision. Mean KOOS scores after medial UKA, lateral UKA, and PFA/BiKA were 84.3 (SD 15.9), 85.6 (SD 14.3), and 78.2 (SD 14.2), respectively. The vast majority of the patients reported high satisfaction levels after RA PKA. Subgroup analyses suggested
Objectives. Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with
Aims. To describe the risk of periprosthetic joint infection (PJI) and reoperation in patients who have an acute, traumatic wound dehiscence following total knee arthroplasty (TKA). Methods. From January 2002 to December 2018, 16,134 primary TKAs were performed at a single institution. A total of 26 patients (0.1%) had a traumatic wound dehiscence within the first 30 days. Mean age was 68 years (44 to 87), 38% (n = 10) were female, and mean BMI was 34 kg/m. 2. (23 to 48). Median time to dehiscence was 13 days (interquartile range (IQR) 4 to 15). The dehiscence resulted from a fall in 22 patients and sudden flexion after staple removal in four. The arthrotomy was also disrupted in 58% (n = 15), including a complete extensor mechanism disruption in four knees. An irrigation and debridement with component retention (IDCR) was performed within 48 hours in 19 of 26 knees and two-thirds were discharged on antibiotic therapy. The mean follow-up was six years (2 to 15). The association of wound dehiscence and the risk of developing a PJI was analyzed. Results. Patients who sustained a traumatic wound dehiscence had a 6.5-fold increase in the risk of PJI (95% confidence interval (CI) 1.6 to 26.2; p = 0.008). With the small number of PJIs, no variables were found to be significant risk factors. However, there were no PJIs in any of the patients who were treated with IDCR and a course of antibiotics. Three knees required reoperation including one two-stage exchange for PJI, one repeat IDCR for PJI, and one revision for aseptic loosening of the
Aims. It has been suggested that mobile-bearing total knee arthroplasty
(TKA) might lead to better outcomes by accommodating some femorotibial
rotational mismatch, thereby reducing contact stresses and polyethylene
wear. The aim of this study was to determine whether there is a
difference between fixed- and mobile-bearing versions of a contemporary
TKA with respect to durability, range of movement (ROM) and function,
ten years postoperatively. Patients and Methods. A total of 240 patients who were enrolled in this randomized
controlled trial (RCT) underwent a primary cemented TKA with one
of three
Objectives. Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of
Aims. To report mid- to long-term results of Oxford mobile bearing domed lateral unicompartmental knee arthroplasty (UKA), and determine the effect of potential contraindications on outcome. Methods. A total of 325 consecutive domed lateral UKAs undertaken for the recommended indications were included, and their functional and survival outcomes were assessed. The effects of age, weight, activity, and the presence of full-thickness erosions of cartilage in the patellofemoral joint on outcome were evaluated. Results. Median follow-up was seven years (3 to 14), and mean age at surgery was 65 years (39 to 90). Median Oxford Knee Score (OKS) was 43 (interquartile range (IQR) 37 to 47), with 260 (80%) achieving a good or excellent score (OKS > 34). Revisions occurred in 34 (10%); 14 (4%) were for dislocation, of which 12 had no recurrence following insertion of a new bearing, and 12 (4%) were revised for medial osteoarthritis (OA). Ten-year survival was 85% (95% confidence interval (CI) 79 to 90, at risk 72). Age, weight, activity, and patellofemoral erosions did not have a significant effect on the clinical outcome or survival. Conclusion. Domed lateral UKA provides a good alternative to total knee arthroplasty (TKA) in the management of lateral compartment OA. Although dislocation is relatively easy to treat successfully, the dislocation rate of 4% is high. It is recommended that the stability of the bearing is assessed intraoperatively. If the bearing can easily be displaced, the fixed rather than the mobile bearing version of the Oxford lateral
Aims. The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated. Methods. Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison. Results. The stress and strain on the tibial post for the three polyethylenes greatly increased when the insert was placed in malrotation, showing a 38% to 56% increase in von Mises stress and a 335% to 434% increase in PEEQ. The VEPE insert had the lowest PEEQ among the three materials. The mobile-bearing design exhibited a lower increase in stress and strain around the tibial posts than the fixed-bearing design. Conclusion. Using VEPE for the
Aims. The extensive variation in axial rotation of
Aims. The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. Methods. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups. Results. Patients undergoing conventional TKA and robotic TKA had comparable changes in the postoperative systemic inflammatory and localized thermal response at six hours, day 1, day 2, and day 28 after surgery. Robotic TKA had significantly reduced levels of interleukin-6 (p < 0.001), tumour necrosis factor-α (p = 0.021), ESR (p = 0.001), CRP (p = 0.004), lactate dehydrogenase (p = 0.007), and creatine kinase (p = 0.004) at day 7 after surgery compared with conventional TKA. Robotic TKA was associated with significantly improved preservation of the periarticular soft tissue envelope (p < 0.001), and reduced femoral (p = 0.012) and tibial (p = 0.023) bone trauma compared with conventional TKA. Robotic TKA significantly improved the accuracy of achieving the planned limb alignment (p < 0.001), femoral component positioning (p < 0.001), and
Aims. A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. Methods. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component. Results. Volumetric wear rates on eight non-delaminated components measured 15.9 mm. 3. /year (standard error (SE) ± 7.7) on the total part, 11.4 mm. 3. /year (SE ± 6.4) on the medial side and 4.4 (SE ± 2.6) mm. 3. /year on the lateral side. Volumetric wear rates modelled from patient gait mechanics predicted 16.4 mm. 3. /year (SE 2.4) on the total part, 11.7 mm. 3. /year (SE 2.1) on the medial side and 4.7 mm. 3. /year (SE 0.4) on the lateral side. Measured and modelled wear volumes correlated significantly on the total part (p = 0.017) and the medial side (p = 0.012) but not on the lateral side (p = 0.154). Conclusion. In the absence of delamination, patient-specific knee mechanics during gait directly affect wear of the
Aims. The purpose of this investigation was to determine the relationship between height, weight, and sex with implant size in total knee arthroplasty (TKA) using a multivariate linear regression model and a Bayesian model. Methods. A retrospective review of an institutional registry was performed of primary TKAs performed between January 2005 and December 2016. Patient demographics including patient age, sex, height, weight, and body mass index (BMI) were obtained from registry and medical record review. In total, 8,100 primary TKAs were included. The mean age was 67.3 years (SD 9.5) with a mean BMI of 30.4 kg/m. 2. (SD 6.3). The TKAs were randomly split into a training cohort (n = 4,022) and a testing cohort (n = 4,078). A multivariate linear regression model was created on the training cohort and then applied to the testing cohort . A Bayesian model was created based on the frequencies of implant sizes in the training cohort. The model was then applied to the testing cohort to determine the accuracy of the model at 1%, 5%, and 10% tolerance of inaccuracy. Results. Height had a relatively strong correlation with implant size (femoral component anteroposterior (AP) Pearson correlation coefficient (ρ) = 0.73, p < 0.001;