Advertisement for orthosearch.org.uk
Results 61 - 80 of 989
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1074 - 1079
1 Aug 2018
Paul R Knowles N Chaoui J Gauci M Ferreira L Walch G Athwal GS

Aims. The Walch Type C dysplastic glenoid is characterized by excessive retroversion. This anatomical study describes its morphology. Patients and Methods. A total of 29 shoulders with a dysplastic glenoid were analyzed. CT was used to measure retroversion, inclination, height, width, radius-of-curvature, surface area, depth, subluxation of the humeral head and the Goutallier classification of fatty infiltration. The severity of dysplasia and deficiency of the posterior rim of the glenoid were recorded. Results. A type C glenoid occurred in 1.8% of shoulders referred to our tertiary centres. The mean retroversion, inclination, height, width, radius-of-curvature, surface area, and depth of the glenoid were 37°, 3°, 46 mm, 30 mm, 37°, 1284 mm. 3. , and 16 mm, respectively. The mean posterior subluxation was 90%. The Goutallier class was < 2 in 25 shoulders (86%). Glenoid dysplasia was mild in four, moderate in 14, and severe in 11 shoulders. The typical appearance of the posterior glenoid rim had a rounded or ‘lazy J’ morphology. The glenoid neck was deficient in 18 shoulders (62%). Conclusion. A dysplastic Type C glenoid characteristically has a uniconcave retroverted morphology, a deficient posteroinferior rim and scapular neck, and a reduced depth. These findings help to define the unique anatomical variations and may aid the planning of surgery and the development of components for these patients. Cite this article: Bone Joint J 2018;100-B:1074–9


Bone & Joint Open
Vol. 3, Issue 1 | Pages 12 - 19
3 Jan 2022
Salih S Grammatopoulos G Burns S Hall-Craggs M Witt J

Aims. The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC). Methods. This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC. Results. CT-measured LCEA and AI correlated strongly with roentgenographical LCEA (r = 0.92; p < 0.001) and AI (r = 0.83; p < 0.001). Radiological LCEA correlated very strongly with CT FHC (r = 0.92; p < 0.001). The sum of AWI and PWI also correlated strongly with CTFHC (r = 0.73; p < 0.001). CT measurements of LCEA and AI were 3.4° less and 2.3° greater than radiological LCEA and AI measures. There was a linear relation between radiological LCEA and CT FHC. The linear regression model statistically significantly predicted FHC from LCEA, F(1,96) = 545.1 (p < 0.001), adjusted R. 2. = 85.0%, with the prediction equation: CT FHC(%) = 42.1 + 0.77(XRLCEA). Conclusion. CT and roentgenographical measurement of acetabular parameters are comparable. Currently, a radiological LCEA greater than 25° is considered normal. This study demonstrates that those with hip pain and normal radiological acetabular parameters may still have deficiencies in FHC. More sophisticated imaging techniques such as 3D CT should be considered for those with hip pain to identify deficiencies in FHC. Cite this article: Bone Jt Open 2022;3(1):12–19


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1736 - 1741
1 Nov 2021
Tolk JJ Eastwood DM Hashemi-Nejad A

Aims. Perthes’ disease (PD) often results in femoral head deformity and leg length discrepancy (LLD). Our objective was to analyze femoral morphology in PD patients at skeletal maturity to assess where the LLD originates, and evaluate the effect of contralateral epiphysiodesis for length equalization on proximal and subtrochanteric femoral lengths. Methods. All patients treated for PD in our institution between January 2013 and June 2020 were reviewed retrospectively. Patients with unilateral PD, LLD of ≥ 5 mm, and long-leg standing radiographs at skeletal maturity were included. Total leg length, femoral and tibial length, articulotrochanteric distance (ATD), and subtrochanteric femoral length were compared between PD side and the unaffected side. Furthermore, we compared leg length measurements between patients who did and who did not have a contralateral epiphysiodesis. Results. Overall, 79 patients were included, of whom 21 underwent contralateral epiphysiodesis for leg length correction. In the complete cohort, the mean LLD was 1.8 cm (95% confidence interval (CI) 1.5 to 2.0), mean ATD difference was 1.8 cm (95% CI -2.1 to -1.9), and mean subtrochanteric difference was -0.2 cm (95% CI -0.4 to 0.1). In the epiphysiodesis group, the mean LLD before epiphysiodesis was 2.7 cm (95% CI 1.3 to 3.4) and 1.3 cm (95% CI -0.5 to 3.8) at skeletal maturity. In the nonepiphysiodesis group the mean LLD was 2.0 cm (95% CI 0.5 to 5.1; p = 0.016). The subtrochanteric region on the PD side was significantly longer at skeletal maturity in the epiphysiodesis group compared to the nonepiphysiodesis group (-1.0 cm (95% CI -2.4 to 0.6) vs 0.1 cm (95% CI -1.0 to 2.1); p < 0.001). Conclusion. This study demonstrates that LLD after PD originates from the proximal segment only. In patients who had contralateral epiphysiodesis to balance leg length, this is achieved by creating a difference in subtrochanteric length. Arthroplasty surgeons need to be aware that shortening of the proximal femur segment in PD patients may be misleading, as the ipsilateral subtrochanteric length in these patients can be longer. Therefore, we strongly advise long-leg standing films for THA planning in PD patients in order to avoid inadvertently lengthening the limb. Cite this article: Bone Joint J 2021;103-B(11):1736–1741


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1351 - 1357
1 Aug 2021
Sun J Chhabra A Thakur U Vazquez L Xi Y Wells J

Aims. Some patients presenting with hip pain and instability and underlying acetabular dysplasia (AD) do not experience resolution of symptoms after surgical management. Hip-spine syndrome is a possible underlying cause. We hypothesized that there is a higher frequency of radiological spine anomalies in patients with AD. We also assessed the relationship between radiological severity of AD and frequency of spine anomalies. Methods. In a retrospective analysis of registry data, 122 hips in 122 patients who presented with hip pain and and a final diagnosis of AD were studied. Two observers analyzed hip and spine variables using standard radiographs to assess AD. The frequency of lumbosacral transitional vertebra (LSTV), along with associated Castellvi grade, pars interarticularis defect, and spinal morphological measurements were recorded and correlated with radiological severity of AD. Results. Out of 122 patients, 110 (90.2%) were female and 12 (9.8%) were male. We analyzed the radiographs of 122 hips (59 (48.4%) symptomatic left hips, and 63 (51.6%) symptomatic right hips). Average age at time of presentation was 34.2 years (SD 11.2). Frequency of LSTV was high (39% to 43%), compared to historic records from the general population, with Castellvi type 3b being the most common (60% to 63%). Patients with AD have increased L4 and L5 interpedicular distance compared to published values. Frequency of pars interarticularis defect was 4%. Intraclass correlation coefficient for hip and spine variables assessed ranged from good (0.60 to 0.75) to excellent (0.75 to 1.00). Severity of AD did not demonstrate significant correlation with frequency of radiological spine anomalies. Conclusion. Patients with AD have increased frequency of spinal anomalies seen on standard hip radiographs. However, there exists no correlation between radiological severity of AD and frequency of spine anomalies. In managing AD patients, clinicians should also assess spinal anomalies that are easily found on standard hip radiographs. Cite this article: Bone Joint J 2021;103-B(8):1351–1357


Bone & Joint Open
Vol. 2, Issue 9 | Pages 757 - 764
1 Sep 2021
Verhaegen J Salih S Thiagarajah S Grammatopoulos G Witt JD

Aims. Periacetabular osteotomy (PAO) is an established treatment for acetabular dysplasia. It has also been proposed as a treatment for patients with acetabular retroversion. By reviewing a large cohort, we aimed to test whether outcome is equivalent for both types of morphology and identify factors that influenced outcome. Methods. A single-centre, retrospective cohort study was performed on patients with acetabular retroversion treated with PAO (n = 62 hips). Acetabular retroversion was diagnosed clinically and radiologically (presence of a crossover sign, posterior wall sign, lateral centre-edge angle (LCEA) between 20° and 35°). Outcomes were compared with a control group of patients undergoing PAO for dysplasia (LCEA < 20°; n = 86 hips). Femoral version was recorded. Patient-reported outcome measures (PROMs), complications, and reoperation rates were measured. Results. The mean Non-Arthritic Hip Score (NAHS) preoperatively was 58.6 (SD 16.1) for the dysplastic hips and 52.5 (SD 12.7) for the retroverted hips (p = 0.145). Postoperatively, mean NAHS was 83.0 (SD 16.9) and 76.7 (SD 17.9) for dysplastic and retroverted hips respectively (p = 0.041). Difference between pre- and postoperative NAHS was slightly lower in the retroverted hips (18.3 (SD 22.1)) compared to the dysplastic hips (25.2 (SD 15.2); p = 0.230). At mean 3.5 years’ follow-up (SD 1.9), one hip needed a revision PAO and no hips were converted to total hip arthroplasty (THA) in the retroversion group. In the control group, six hips (7.0%) were revised to THA. No differences in complications (p = 0.106) or in reoperation rate (p = 0.087) were seen. Negative predictors of outcome for patients undergoing surgery for retroversion were female sex, obesity, hypermobility, and severely decreased femoral anteversion. Conclusion. A PAO is an effective surgical intervention for acetabular retroversion and produces similar improvements when used to treat dysplasia. Femoral version should be routinely assessed in these patients and when extremely low (< 0°), as an additional procedure to address this abnormality may be necessary. Females with signs of hypermobility should also be consulted of the likely guarded improvement. Cite this article: Bone Jt Open 2021;2(9):757–764


Bone & Joint Research
Vol. 9, Issue 9 | Pages 572 - 577
1 Sep 2020
Matsumoto K Ganz R Khanduja V

Aims. Femoroacetabular impingement (FAI) describes abnormal bony contact of the proximal femur against the acetabulum. The term was first coined in 1999; however what is often overlooked is that descriptions of the morphology have existed in the literature for centuries. The aim of this paper is to delineate its origins and provide further clarity on FAI to shape future research. Methods. A non-systematic search on PubMed was performed using keywords such as “impingement” or “tilt deformity” to find early anatomical descriptions of FAI. Relevant references from these primary studies were then followed up. Results. Although FAI has existed for almost 5,000 years, the anatomical study by Henle in 1855 was the first to describe it in the literature. The relevance of the deformity was not appreciated at the time but this triggered the development of further anatomical studies. Parallel to this, Poland performed the first surgical correction of FAI in 1898 and subsequently, descriptions of similar procedures followed. In 1965, Murray outlined radiological evidence of idiopathic cam-type deformities and highlighted its significance. This led to a renewed focus on FAI and eventually, Ganz et al released their seminal paper that has become the foundation of our current understanding of FAI. Since then, there has been an exponential rise in published literature but finding a consensus, especially in the diagnosis of FAI, has proven to be difficult. Conclusion. Current research on FAI heavily focuses on new data, but old evidence does exist and studying it could be equally as important in clarifying the aetiology and classification of FAI. Cite this article: Bone Joint Res 2020;9(9):572–577


Bone & Joint Research
Vol. 9, Issue 9 | Pages 613 - 622
1 Sep 2020
Perucca Orfei C Lovati AB Lugano G Viganò M Bottagisio M D’Arrigo D Sansone V Setti S de Girolamo L

Aims. In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy. Methods. A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.5 mT and 75 Hz) for up to 14 days - starting 1, 7, or 15 days after the injection - to identify the best treatment option with respect to the phase of the disease. Then, 7 and 14 days of PEMF exposure were compared to identify the most effective protocol. Results. The daily exposure to PEMFs generally provided an improvement in the fibre organization, a decrease in cell density, vascularity, and fat deposition, and a restoration of the physiological cell morphology compared to untreated tendons. These improvements were more evident when the tendons were exposed to PEMFs during the mid-acute phase of the pathology (7 days after induction) rather than during the early (1 day after induction) or the late acute phase (15 days after induction). Moreover, the exposure to PEMFs for 14 days during the mid-acute phase was more effective than for 7 days. Conclusion. PEMFs exerted a positive role in the tendon healing process, thus representing a promising conservative treatment for tendinopathy, although further investigations regarding the clinical evaluation are needed. Cite this article: Bone Joint Res 2020;9(9):613–622


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1194 - 1199
14 Sep 2020
Lee H Kim E Kim Y

Aims. The purpose of this study was to identify the changes in untreated long head of the biceps brachii tendon (LHBT) after a rotator cuff tear and to evaluate the factors related to the changes. Methods. A cohort of 162 patients who underwent isolated supraspinatus with the preservation of LHBT was enrolled and evaluated. The cross-sectional area (CSA) of the LHBT on MRI was measured in the bicipital groove, and preoperative to postoperative difference was calculated at least 12 months postoperatively. Second, postoperative changes in the LHBT including intratendinous signal change, rupture, dislocation, or superior labral lesions were evaluated with seeking of factors that were correlated with the changes or newly developed lesions after rotator cuff repair. Results. The postoperative CSA (12.5 mm. 2. (SD 8.3) was significantly larger than preoperative CSA (11.5 mm. 2. (SD 7.5); p = 0.005). In total, 32 patients (19.8%) showed morphological changes in the untreated LHBT 24 months after rotator cuff repair. Univariate regression analysis revealed that the factor chiefly related to the change in LHBT status was an eccentric LHBT position within the groove found on preoperative MRI (p = 0.011). Multivariate analysis using logistic regression also revealed that an eccentric LHBT position was a factor related to postoperative change in untreated LHBTs (p = 0.011). Conclusion. The CSA of the LHBT inside the biceps groove increased after rotator cuff repair. The preoperative presence of an eccentrically positioned LHBT was associated with further changes of the tendon itself after rotator cuff repair. Cite this article: Bone Joint J 2020;102-B(9):1194–1199


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 931 - 938
1 May 2021
Liu Y Lu H Xu H Xie W Chen X Fu Z Zhang D Jiang B

Aims. The morphology of medial malleolar fracture is highly variable and difficult to characterize without 3D reconstruction. There is also no universally accepeted classification system. Thus, we aimed to characterize fracture patterns of the medial malleolus and propose a classification scheme based on 3D CT reconstruction. Methods. We retrospectively reviewed 537 consecutive cases of ankle fractures involving the medial malleolus treated in our institution. 3D fracture maps were produced by superimposing all the fracture lines onto a standard template. We sliced fracture fragments and the standard template based on selected sagittal and coronal planes to create 2D fracture maps, where angles α and β were measured. Angles α and β were defined as the acute angles formed by the fracture line and the horizontal line on the selected planes. Results. A total of 121 ankle fractures were included. We revealed several important fracture features, such as a high correlation between posterior collicular fractures and posteromedial fragments. Moreover, we generalized the fracture geometry into three recurrent patterns on the coronal view of 3D maps (transverse, vertical, and irregular) and five recurrent patterns on the lateral view (transverse, oblique, vertical, Y-shaped, and irregular). According to the fracture geometry on the coronal and lateral view of 3D maps, we subsequently categorized medial malleolar fractures into six types based on the recurrent patterns: anterior collicular fracture (27 type I, 22.3%), posterior collicular fracture (12 type II, 9.9%), concurrent fracture of anterior and posterior colliculus (16 type III, 13.2%), and supra-intercollicular groove fracture (66 type IV, 54.5%). Therewere three variants of type IV fractures: transverse (type IVa), vertical (type IVb), and comminuted fracture (type IVc). The angles α and β varied accordingly. Conclusion. Our findings yield insight into the characteristics and recurrent patterns of medial malleolar fractures. The proposed classification system is helpful in understanding injury mechanisms and guiding diagnosis, as well as surgical strategies. Cite this article: Bone Joint J 2021;103-B(5):931–938


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 51 - 58
1 Jun 2021
Yang J Heckmann ND Nahhas CR Salzano MB Ruzich GP Jacobs JJ Paprosky WG Rosenberg AG Nam D

Aims. Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. Methods. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship. Results. A total of 720 of 754 primary TKAs (95.5%) were included with a mean follow-up of 3.9 years (SD 1.3); 562 (78.1%) were cruciate-retaining and 158 (21.9%) were posterior-stabilized. A total of 11 (1.5%) required reoperation for periprosthetic joint infection and seven (1.0%) for aseptic tibial loosening (five cruciate-retaining, two posterior-stabilized). Loosening occurred at a mean of 3.3 years (0.9 to 6.5). There were no cases of loosening in the 33 patients who received a 14 mm × 30 mm tibial stem extension. All-cause survivorship was 96.6% at three years (95% confidence interval (CI) 95.3% to 98.0%) and 96.2% at five years (95% CI 94.8% to 97.7%). Survivorship with revision for aseptic loosening was 99.6% at three years (95% CI 99.1% to 100.0%) and 99.1% at five years (95% CI 98.4% to 99.9%). Tibial components were in significantly more varus in those with aseptic loosening (mean 3.4° (SD 3.7°) vs 1.3° (SD 2.0°); p = 0.015). There were no other differences in demographic, radiological, or surgical characteristics between revised and non-revised TKAs for aseptic loosening (p = 0.293 to 1.00). Mean KSS improved significantly from 57.3 (SD 9.5) preoperatively to 92.6 (SD 8.9) at the final follow-up (p < 0.001). Conclusion. This is the largest series to date of this design of implant. At short-term follow-up, the rate of aseptic tibial loosening is not overly concerning. Further observation is required to determine if there will be an abnormal rate of loosening at mid- to long-term follow-up. Cite this article: Bone Joint J 2021;103-B(6 Supple A):51–58


Bone & Joint Research
Vol. 9, Issue 7 | Pages 402 - 411
1 Aug 2020
Sanghani-Kerai A Coathup M Brown R Lodge G Osagie-Clouard L Graney I Skinner J Gikas P Blunn G

Aims. For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel. Methods. The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue. Results. Overall, 2.5 times concentration of PRP in ABG was capable of supporting the maximum growth of cells isolated from the BM aspirate and maintain their characteristics. Irrespective of PRP concentration, cells in ABG had statistically significantly higher viability compared to cells in fibrin glue. Conclusion. In vitro this novel autologous gel is more capable of supporting the growth of cells in its structure for up to 14 days, compared to commercially available fibrin-based sealants, and this difference was statistically significant. Cite this article: Bone Joint Res 2020;9(7):402–411


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 98 - 101
1 Jan 2012
Schizas C Kulik G

Surgical decision-making in lumbar spinal stenosis involves assessment of clinical parameters and the severity of the radiological stenosis. We suspected that surgeons based surgical decisions more on dural sac cross-sectional area (DSCA) than on the morphology of the dural sac. We carried out a survey among members of three European spine societies. The axial T2-weighted MR images from ten patients with varying degrees of DSCA and morphological grades according to the recently described morphological classification of lumbar spinal stenosis, with DSCA values disclosed in half the assessed images, were used for evaluation. We provided a clinical scenario to accompany the images, which were shown to 142 responding physicians, mainly orthopaedic surgeons but also some neurosurgeons and others directly involved in treating patients with spinal disorders. As the primary outcome we used the number of respondents who would proceed to surgery for a given DSCA or morphological grade. Substantial agreement among the respondents was observed, with severe or extreme stenosis as defined by the morphological grade leading to surgery. This decision was not dependent on the number of years in practice, medical density or specialty. Disclosing the DSCA did not alter operative decision-making. In all, 40 respondents (29%) had prior knowledge of the morphological grading system, but their responses showed no difference from those who had not. This study suggests that the participants were less influenced by DSCA than by the morphological appearance of the dural sac. . Classifying lumbar spinal stenosis according to morphology rather than surface measurements appears to be consistent with current clinical practice


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives. Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods. The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results. Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions. The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 822 - 831
1 Jul 2020
Kuroda Y Saito M Çınar EN Norrish A Khanduja V

Aims. This paper aims to review the evidence for patient-related factors associated with less favourable outcomes following hip arthroscopy. Methods. Literature reporting on preoperative patient-related risk factors and outcomes following hip arthroscopy were systematically identified from a computer-assisted literature search of Pubmed (Medline), Embase, and Cochrane Library using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and a scoping review. Results. Assessment of these texts yielded 101 final articles involving 90,315 hips for qualitative analysis. The most frequently reported risk factor related to a less favourable outcome after hip arthroscopy was older age and preoperative osteoarthritis of the hip. This was followed by female sex and patients who have low preoperative clinical scores, severe hip dysplasia, altered hip morphology (excess acetabular retroversion or excess femoral anteversion or retroversion), or a large cam deformity. Patients receiving workers’ compensation or with rheumatoid arthritis were also more likely to have a less favourable outcome after hip arthroscopy. There is evidence that obesity, smoking, drinking alcohol, and a history of mental illness may be associated with marginally less favourable outcomes after hip arthroscopy. Athletes (except for ice hockey players) enjoy a more rapid recovery after hip arthroscopy than non-athletes. Finally, patients who have a favourable response to local anaesthetic are more likely to have a favourable outcome after hip arthroscopy. Conclusion. Certain patient-related risk factors are associated with less favourable outcomes following hip arthroscopy. Understanding these risk factors will allow the appropriate surgical indications for hip arthroscopy to be further refined and help patients to comprehend their individual risk profile. Cite this article: Bone Joint J 2020;102-B(7):822–831


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 49 - 57
1 Jan 2016
Bonnin MP Saffarini M Bossard N Dantony E Victor J

Aims. Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has largely been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e. whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA. Methods. We analysed the shape of 114 arthritic knees at the time of primary TKA using the pre-operative CT scans. The aspect ratio and trapezoidicity ratio were quantified, and the post-operative prosthetic overhang was calculated. We compared the morphological characteristics with those of 12 TKA models. Results. There was significant variation in both the aspect ratio and trapezoidicity ratio between individuals. Femoral trapezoidicity was mostly due to an inward curve of the medial cortex. Overhang was correlated with the aspect ratio (with a greater chance of overhang in narrow femurs), trapezoidicity ratio (with a greater chance in trapezoidal femurs), and the tibio-femoral angle (with a greater chance in valgus knees). . Discussion. This study shows that rectangular/trapezoidal variability of the distal femur cannot be ignored. Most of the femoral components which were tested appeared to be excessively rectangular when compared with the bony contours of the distal femur. These findings suggest that the design of TKA should be more concerned with matching the trapezoidal/rectangular shape of the native femur. Take home message: The distal femur is considerably more trapezoidal than most femoral components, and therefore, care must be taken to avoid anterior prosthetic overhang in TKA. Cite this article: Bone Joint J 2016;98-B:49–57


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims. Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. Methods. In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation. Results. TGF-β and bFGF were shown to significantly enhance cell proliferation. VEGF and IGF-1 supported ALP activity. Light microscopy showed initial extracellular matrix mineralization after VEGF/IGF-1 supply. Conclusion. A combination of more than two growth factors did not support the cellular metabolism level and ALP activity even though the growth factor itself had a positive effect. This is probably caused by interplay of various messengers shared by more growth factor signalling cascades. Cite this article: Bone Joint Res 2020;9(7):412–420


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 927 - 933
1 Jul 2017
Poltaretskyi S Chaoui J Mayya M Hamitouche C Bercik MJ Boileau P Walch G

Aims. Restoring the pre-morbid anatomy of the proximal humerus is a goal of anatomical shoulder arthroplasty, but reliance is placed on the surgeon’s experience and on anatomical estimations. The purpose of this study was to present a novel method, ‘Statistical Shape Modelling’, which accurately predicts the pre-morbid proximal humeral anatomy and calculates the 3D geometric parameters needed to restore normal anatomy in patients with severe degenerative osteoarthritis or a fracture of the proximal humerus. Materials and Methods. From a database of 57 humeral CT scans 3D humeral reconstructions were manually created. The reconstructions were used to construct a statistical shape model (SSM), which was then tested on a second set of 52 scans. For each humerus in the second set, 3D reconstructions of four diaphyseal segments of varying lengths were created. These reconstructions were chosen to mimic severe osteoarthritis, a fracture of the surgical neck of the humerus and a proximal humeral fracture with diaphyseal extension. The SSM was then applied to the diaphyseal segments to see how well it predicted proximal morphology, using the actual proximal humeral morphology for comparison. Results. With the metaphysis included, mimicking osteoarthritis, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 2.9° (± 2.3°), 4.0° (± 3.3°), 1.0 mm (± 0.8 mm), 0.8 mm (± 0.6 mm), 0.7 mm (± 0.5 mm) and 1.0 mm (± 0.7 mm), respectively. With the metaphysis excluded, mimicking a fracture of the surgical neck, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 3.8° (± 2.9°), 3.9° (± 3.4°), 2.4 mm (± 1.9 mm), 1.3 mm (± 0.9 mm), 0.8 mm (± 0.5 mm) and 0.9 mm (± 0.6 mm), respectively. Conclusion. This study reports a novel, computerised method that accurately predicts the pre-morbid proximal humeral anatomy even in challenging situations. This information can be used in the surgical planning and operative reconstruction of patients with severe degenerative osteoarthritis or with a fracture of the proximal humerus. Cite this article: Bone Joint J 2017;99-B:927–33


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological mechanisms provide improved understanding of the biomembrane’s osteogenic potential and molecular properties. Cite this article: Dr H. E. Gruber. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–115. DOI: 10.1302/2046-3758.54.2000483


Bone & Joint Research
Vol. 3, Issue 12 | Pages 328 - 334
1 Dec 2014
Harada Y Kokubu T Mifune Y Inui A Sakata R Muto T Takase F Kurosaka M

Objectives. To investigate the appropriate dose and interval for the administration of triamcinolone acetonide (TA) in treating tendinopathy to avoid adverse effects such as tendon degeneration and rupture. Methods. Human rotator cuff-derived cells were cultured using three media: regular medium (control), regular medium with 0.1 mg/mL of TA (low TA group), and with 1.0 mg/mL of TA (high TA group). The cell morphology, apoptosis, and viability were assessed at designated time points. Results. In the low TA group, the cells became flattened and polygonal at seven days then returned to normal at 21 days. The cell apoptosis ratio and messenger ribonucleic acid expression of caspase-3, 7, 8, and 9 increased, and viability was reduced in the low and high groups at seven days. In the low TA group, apoptosis and viability returned to normal at 21 days, however, in the high TA group, the cell morphology, apoptosis ratio, caspase-3, 7, 8, and 9 and viability did not return by day 21. Re-administration was performed in the low TA group at 7-, 14-, and 21-day intervals, and cell viability did not return to the control level at the 7- and 14-day intervals. Conclusion. A 0.1 mg/mL dose of TA temporarily decreased cell viability and increased cell apoptosis, which was recovered at 21 days, however, 1 mg/mL of TA caused irreversible damage to cell morphology and viability. An interval > three weeks was needed to safely re-administer TA. These findings may help determine the appropriate dose and interval for TA injection therapy. Cite this article: Bone Joint Res 2014;3:328–34