Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology.Aims
Methods
After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA. Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed.Aims
Methods
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article:
Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs.Aims
Methods
The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty. A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated.Aims
Methods
Treatment outcomes for methicillin-resistant Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation.Aims
Methods
We reviewed 190 children with brucellosis admitted over a 7.8-year period. Seventy of these had articular involvement (36%) and the most common site was the hip (18%). All but one patient had unilateral infection. The hip was the only joint infected in 20 patients (57%). The next most common articular site was the knee. All patients had painful limitation of movement and this was the only articular sign in 28 (80%). Extra-articular signs included fever and hepatosplenomegaly. Brucella infection should be considered in every child from an endemic area who presents with fever and joint symptoms. The insidious onset and a normal or low
This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).Aims
Methods
Serum inflammatory parameters are widely used to aid in diagnosing a periprosthetic joint infection (PJI). Due to their limited performances in the literature, novel and more accurate biomarkers are needed. Serum albumin-to-globulin ratio (AGR) and serum CRP-to-albumin ratio (CAR) have previously been proposed as potential new parameters, but results were mixed. The aim of this study was to assess the diagnostic accuracy of AGR and CAR in diagnosing PJI and to compare them to the established and widely used marker CRP. From 2015 to 2022, a consecutive series of 275 cases of revision total hip (n = 129) and knee arthroplasty (n = 146) were included in this retrospective cohort study. Based on the 2021 European Bone and Joint Infection Society (EBJIS) definition, 144 arthroplasties were classified as septic. Using receiver operating characteristic curve (ROC) analysis, the ideal thresholds and diagnostic performances were calculated. The areas under the curve (AUCs) were compared using the z-test.Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article:
It has been suggested that reamed intramedullary nailing of the femur should be avoided in some patients with multiple injuries. We have studied prospectively the effect of femoral reaming on the inflammatory process as implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) and multiple-organ failure (MOF). We studied changes in the levels of serum interleukin-6 (IL-6) (proinflammatory cytokine), neutrophil CD11b (C3) receptor expression (activated neutrophil adhesion molecule), serum soluble intracellular adhesion molecule (s-ICAM-1), serum soluble E-selectin (the soluble products of endothelial adhesion molecules) and plasma elastase (neutrophil protease) in a series of patients with femoral fractures treated by nailing. We have also compared reamed nailing with unreamed nailing. We found that the levels of serum IL-6 and elastase rose significantly during the nailing procedure indicating a measurable ‘second hit’. There was no clear response in
We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan. We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations.Aims
Methods
Platelet-rich plasma (PRP) intra-articular injections may provide a simple and minimally invasive treatment for early-stage knee osteoarthritis (OA). This has led to an increase in its adoption as a treatment for knee OA, although there is uncertainty about its efficacy and benefit. We hypothesized that patients with early-stage symptomatic knee OA who receive multiple PRP injections will have better clinical outcomes than those receiving single PRP or placebo injections. A double-blinded, randomized placebo-controlled trial was performed with three groups receiving either placebo injections (Normal Saline), one PRP injection followed by two placebo injections, or three PRP injections. Each injection was given one week apart. Outcomes were prospectively collected prior to intervention and then at six weeks, three months, six months, and 12 months post-intervention. Primary outcome measures were Knee Injury and Osteoarthritis Outcome Score (KOOS) and EuroQol five-dimension five-level index (EQ-5D-5L). Secondary outcomes included visual analogue scale for pain and patient subjective assessment of the injections.Aims
Methods
The aim of this study was to analyze the prevalence of culture-negative periprosthetic joint infections (PJIs) when adequate methods of culture are used, and to evaluate the outcome in patients who were treated with antibiotics for a culture-negative PJI compared with those in whom antibiotics were withheld. A multicentre observational study was undertaken: 1,553 acute and 1,556 chronic PJIs, diagnosed between 2013 and 2018, were retrospectively analyzed. Culture-negative PJIs were diagnosed according to the Muskuloskeletal Infection Society (MSIS), International Consensus Meeting (ICM), and European Bone and Joint Society (EBJIS) definitions. The primary outcome was recurrent infection, and the secondary outcome was removal of the prosthetic components for any indication, both during a follow-up period of two years.Aims
Methods
Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot.Aims
Methods
Periprosthetic joint infections (PJIs) with prior multiple failed surgery for reinfection represent a huge challenge for surgeons because of poor vascular supply and biofilm formation. This study aims to determine the results of single-stage revision using intra-articular antibiotic infusion in treating this condition. A retrospective analysis included 78 PJI patients (29 hips; 49 knees) who had undergone multiple prior surgical interventions. Our cohort was treated with single-stage revision using a supplementary intra-articular antibiotic infusion. Of these 78 patients, 59 had undergone more than two prior failed debridement and implant retentions, 12 patients had a failed arthroplasty resection, three hips had previously undergone failed two-stage revision, and four had a failed one-stage revision before their single-stage revision. Previous failure was defined as infection recurrence requiring surgical intervention. Besides intravenous pathogen-sensitive agents, an intra-articular infusion of vancomycin, imipenem, or voriconazole was performed postoperatively. The antibiotic solution was soaked into the joint for 24 hours for a mean of 16 days (12 to 21), then extracted before next injection. Recurrence of infection and clinical outcomes were evaluated.Aims
Methods
The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects. HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks.Aims
Methods
This study aimed to answer two questions: what are the best diagnostic methods for diagnosing bacterial arthritis of a native joint?; and what are the most commonly used definitions for bacterial arthritis of a native joint? We performed a search of PubMed, Embase, and Cochrane libraries for relevant studies published between January 1980 and April 2020. Of 3,209 identified studies, we included 27 after full screening. Sensitivity, specificity, area under the curve, and Youden index of diagnostic tests were extracted from included studies. We grouped test characteristics per diagnostic modality. We extracted the definitions used to establish a definitive diagnosis of bacterial arthritis of a native joint per study.Aims
Methods