We reviewed 11 patients who had been treated between January 1986 and June 1994 for severe foot injuries by tendon transfer with microvascular free flaps. Their mean age was 5.6 years (3 to 8). Five had simultaneous tendon transfer and a microvascular free flap and six had separate operations. The mean interval between the tendon transfer and the microvascular free flap was 5.8 months (2 to 15) and the mean time between the initial injury and the tendon transfer was 9.6 months (2 to 21). The anterior tibial tendon was split in five of six cases. The posterior tibial tendon was used three times and the extensor digitorum longus tendon twice. The mean follow-up was 39.7 months (24 to 126). There were nine excellent and two good results. Postoperative complications included loosening of the transferred tendon (2), plantar flexion contracture (1) mild flat foot deformity (1) and
The role of three genetically distinct collagen types in the formation of endochondral bone and in calcification and resorption of cartilage has been assessed. Using antibodies specific to types I, II and III collagen we have demonstrated in the embryonic chick tibia that endochondral bone formation began with deposition of type III collagen in lacunae of hypertropic chondrocytes by invading bone-marrow-derived cells. This was followed by the deposition of type I collagen, which is the collagenous constituent of endochondral osteoid. At later stages of development endochondral osteoid was found in the epiphysial growth plate in apparently intact lacunae of
We have examined the process of fusion of the intertransverse processes and bone graft in the rabbit by in situ hybridisation and evaluated the spatial and temporal expression of genes encoding pro-α1 (I) collagen (COL1A1), pro-α1 (II) collagen (COL2A1) and pro-α1 (X) collagen (COL10A1). Beginning at two weeks after operation, osteogenesis and chondrogenesis occurred around the transverse process and the grafted bone at the central portion of the area of the fusion mass. Osteoblasts and osteocytes at the newly-formed woven bone expressed COL1A1. At the cartilage, most chondrocytes expressed COL2A1 and some
The treatment of large bony defects by callus distraction is well accepted, but the duration of treatment is long and the rate of complications increases accordingly. We have examined the effect of the stiffness of the axial fixator on reducing the time for maturation of callus. We created a mid-diaphyseal defect of 15 mm in the metatarsal bone in sheep and stabilised it with a ring fixator. After four days a bony segment was transported for 16 days at 1 mm per day. After 64 days the animals were divided into four groups, three with axial interfragmentary movement (IFM) of 0.5, 1.2 and 3.0 mm, respectively, and a control group. The 3.0 mm IFM group had the smallest bone density (p = 0.001) and area of callus and the largest IFM after 12 weeks; it also had typical clinical signs of
We have used an experimental model employing the bent tail of rats to investigate the effects of mechanical forces on bones and joints. Mechanical strain could be applied to the bones and joints of the tail without direct surgical exposure or the application of pins and wires. The intervertebral disc showed stretched annular lamellae on the convex side, while the annulus fibrosus on the concave side was pinched between the inner corners of the vertebral epiphysis. In young rats with an active growth plate, a transverse fissure appeared at the level of the
From this work it may be concluded that persistent compression affects the growth plate by interference with the blood flow on one or both sides of the growth cartilage. Despite exertion of the same pressure upon both sides of the growth plate, only the metaphysial side was readily affected in the early stages, for, as long as no damage was caused to the epiphysial side of the growth cartilage, the lesions were fully reversible. Interference with growth was directly proportionate to the damage caused by compression to the epiphysial side of the growth plate and, in general, to the duration of compression. The first signs of interference with the metaphysial side of the plate were the lack of vascular progression and concomitant retardation of calcification. When severe degeneration was not present the growth cartilage recovered within four days. The matrix was ready for calcification all the time, as shown by the extremely rapid calcification occurring soon after the compression had ceased and the vessels were able to reach their proper place. It seems justified to believe that the first
The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods. Cite this article:
Chondrocyte hypertrophy represents a crucial turning point during endochondral bone development. This process is tightly regulated by various factors, constituting a regulatory network that maintains normal bone development. Histone deacetylase 4 (HDAC4) is the most well-characterized member of the HDAC class IIa family and participates in different signalling networks during development in various tissues by promoting chromatin condensation and transcriptional repression. Studies have reported that HDAC4-null mice display premature ossification of developing bones due to ectopic and early-onset chondrocyte hypertrophy. Overexpression of HDAC4 in proliferating chondrocytes inhibits hypertrophy and ossification of developing bones, which suggests that HDAC4, as a negative regulator, is involved in the network regulating chondrocyte hypertrophy. Overall, HDAC4 plays a key role during bone development and disease. Thus, understanding the role of HDAC4 during chondrocyte hypertrophy and endochondral bone formation and its features regarding the structure, function, and regulation of this process will not only provide new insight into the mechanisms by which HDAC4 is involved in chondrocyte hypertrophy and endochondral bone development, but will also create a platform for developing a therapeutic strategy for related diseases.
Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation.Aims
Methods
Fixation of scaphoid nonunion with a volar locking plate and cancellous bone grafting has been shown to be a successful technique in small series. Few mid- or long-term follow-up studies have been reported. The aim of this study was to report the mid-term radiological and functional outcome of plate fixation for scaphoid nonunion. Patients with a scaphoid nonunion were prospectively enrolled and treated with open reduction using a volar approach, debridement of the nonunion, and fixation using a locking plate and cancellous bone grafting, from the ipsilateral iliac crest. Follow-up included examination, functional assessment using the patient-rated wrist/hand evaluation (PRWHE), and multiplanar reformation CT scans at three-month intervals until union was confirmed.Aims
Methods
The purpose of this study was to identify the changes in untreated long head of the biceps brachii tendon (LHBT) after a rotator cuff tear and to evaluate the factors related to the changes. A cohort of 162 patients who underwent isolated supraspinatus with the preservation of LHBT was enrolled and evaluated. The cross-sectional area (CSA) of the LHBT on MRI was measured in the bicipital groove, and preoperative to postoperative difference was calculated at least 12 months postoperatively. Second, postoperative changes in the LHBT including intratendinous signal change, rupture, dislocation, or superior labral lesions were evaluated with seeking of factors that were correlated with the changes or newly developed lesions after rotator cuff repair.Aims
Methods
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article:
Post-traumatic elbow stiffness is a disabling condition that remains challenging for upper limb surgeons. Open elbow arthrolysis is commonly used for the treatment of stiff elbow when conservative therapy has failed. Multiple questions commonly arise from surgeons who deal with this disease. These include whether the patient has post-traumatic stiff elbow, how to evaluate the problem, when surgery is appropriate, how to perform an excellent arthrolysis, what the optimal postoperative rehabilitation is, and how to prevent or reduce the incidence of complications. Following these questions, this review provides an update and overview of post-traumatic elbow stiffness with respect to the diagnosis, preoperative evaluation, arthrolysis strategies, postoperative rehabilitation, and prevention of complications, aiming to provide a complete diagnosis and treatment path. Cite this article:
Limb salvage in bone tumour patients replaces the bone with massive segmental prostheses where achieving bone integration at the shoulder of the implant through extracortical bone growth has been shown to prevent loosening. This study investigates the effect of multidrug chemotherapy on extracortical bone growth and early radiological signs of aseptic loosening in patients with massive distal femoral prostheses. A retrospective radiological analysis was performed on adult patients with distal femoral arthroplasties. In all, 16 patients were included in the chemotherapy group with 18 patients in the non-chemotherapy control group. Annual radiographs were analyzed for three years postoperatively. Dimensions of the bony pedicle, osseointegration of the hydroxyapatite (HA) collar surface, bone resorption at the implant shoulder, and radiolucent line (RLL) formation around the cemented component were analyzed.Aims
Methods
When the present study was initiated, we changed the treatment for late-detected developmental dislocation of the hip (DDH) from several weeks of skin traction to markedly shorter traction time. The aim of this prospective study was to evaluate this change, with special emphasis on the rate of stable closed reduction according to patient age, the development of the acetabulum, and the outcome at skeletal maturity. From 1996 to 2005, 49 children (52 hips) were treated for late-detected DDH. Their mean age was 13.3 months (3 to 33) at reduction. Prereduction skin traction was used for a mean of 11 days (0 to 27). Gentle closed reduction under general anaesthesia was attempted in all the hips. Concurrent pelvic osteotomy was not performed. The hips were evaluated at one, three and five years after reduction, at age eight to ten years, and at skeletal maturity. Mean age at the last follow-up was 15.7 years (13 to 21).Aims
Methods
Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability. A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16 regions of interest were recorded. Radiological classification and FTCL were correlated using the Spearman correlation coefficient.Aims
Methods
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from
Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done. We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.Objectives
Methods
The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice. A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported.Aims
Methods