Advertisement for orthosearch.org.uk
Results 61 - 80 of 4788
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1190 - 1196
1 Sep 2017
Swarup I Henn CM Nguyen JT Dines DM Craig EV Warren RF Gulotta LV Henn III RF

Aims . Few studies have evaluated the relationship between patients’ pre-operative expectations and the outcome of orthopaedic procedures. Our aim was to determine the effect of expectations on the outcome after primary anatomical total shoulder arthroplasty (TSA). We hypothesised that patients with greater expectations would have better outcomes. . Patients and Methods. Patients undergoing primary anatomical TSA completed the Hospital for Special Surgery’s Shoulder Expectations Survey pre-operatively. The American Shoulder and Elbow Surgeons (ASES), Shoulder Activity Scale (SAS), Short-Form-36 (SF-36), and visual analogue scale (VAS) for pain, fatigue, and general health scores were also collected pre-operatively and two years post-operatively. Pearson correlations were used to assess the relationship between the number of expectations and the outcomes. Differences in outcomes between those with higher and lower levels of expectations for each expectation were assessed by independent samples t-test. Multivariable linear regression analysis was used to control for potential confounding factors. Results. A total of 67 patients were evaluated two years post-operatively. Most parameters of outcome improved significantly from baseline and most patients were satisfied. A greater number of expectations was associated with a significantly greater improvement in the ASES score (p = 0.02). In the multivariable analysis, a greater number of expectations was an independent predictor of better ASES, VAS and SF-36 scores, as well as improvements in ASES and VAS pain scores (p < 0.05). Greater expectations for many specific expectation questions were significantly associated with better outcomes (p < 0.05). Conclusion. TSA is a successful procedure with significant improvements in outcome, and greater pre-operative expectations are associated with better outcomes. . Cite this article: Bone Joint J 2017;99-B:1190–6


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 734 - 740
1 Jun 2015
den Hartog YM Mathijssen NMC van Dasselaar NT Langendijk PNJ Vehmeijer SBW

Only limited data are available regarding the infiltration of local anaesthetic for total hip arthroplasty (THA), and no studies were performed for THA using the anterior approach. . In this prospective, randomised placebo-controlled study we investigated the effect of both standard and reverse infiltration of local anaesthetic in combination with the anterior approach for THA. The primary endpoint was the mean numeric rating score for pain four hours post-operatively. In addition, we recorded the length of hospital stay, the operating time, the destination of the patient at discharge, the use of pain medication, the occurrence of side effects and pain scores at various times post-operatively. Between November 2012 and January 2014, 75 patients were included in the study. They were randomised into three groups: standard infiltration of local anaesthetic, reversed infiltration of local anaesthetic, and placebo. There was no difference in mean numeric rating score for pain four hours post-operatively (p = 0.87). There were significantly more side effects at one and eight hours post-operatively in the placebo group (p = 0.02; p = 0.03), but this did not influence the mobilisation of the patients. There were no differences in all other outcomes between the groups. We found no clinically relevant effect when the infiltration of local anaesthetic with ropivacaine and epinephrine was used in a multimodal pain protocol for THA using the anterior approach. Cite this article: Bone Joint J 2015; 97-B:734–40


Bone & Joint Research
Vol. 10, Issue 4 | Pages 250 - 258
1 Apr 2021
Kwak D Bang S Lee S Park J Yoo J

Aims

There are concerns regarding initial stability and early periprosthetic fractures in cementless hip arthroplasty using short stems. This study aimed to investigate stress on the cortical bone around the stem and micromotions between the stem and cortical bone according to femoral stem length and positioning.

Methods

In total, 12 femoral finite element models (FEMs) were constructed and tested in walking and stair-climbing. Femoral stems of three different lengths and two different positions were simulated, assuming press-fit fixation within each FEM. Stress on the cortical bone and micromotions between the stem and bone were measured in each condition.


Bone & Joint Open
Vol. 1, Issue 10 | Pages 639 - 643
12 Oct 2020
Atia F Pocnetz S Selby A Russell P Bainbridge C Johnson N

Aims

The aim of this study was to evaluate the need for hand trauma services during the COVID-19 pandemic lockdown, specifically related to surgical requirements. This will provide useful information for planning and resource allocation in the event of any further lockdown.

Methods

A prospective analsysis of all patients attending our hand trauma unit throughout the UK COVID-19 lockdown period (24 March to 10 May 2020) was carried out. Prospectively collected departmental data from the same period in 2019 was obtained and reviewed for comparison. The number of patients attending clinic, undergoing surgery, the type of surgical procedure, and rate of surgery was compared.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 827 - 839
1 Nov 2020
Hameister R Lohmann CH Dheen ST Singh G Kaur C

Aims

This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss.

Methods

TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA).


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 463 - 472
1 Apr 2015
Panagiotidou A Meswania J Osman K Bolland B Latham J Skinner J Haddad FS Hart A Blunn G

The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt–chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. Cite this article: Bone Joint J 2015;97-B:463–72


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives. Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results. Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions. These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 853 - 854
1 Jul 2014
Parsons N Griffin XL Stengel D Carey Smith R Perry DC Costa ML

The Bone & Joint Journal provides the latest evidence to guide the clinical practice of orthopaedic surgeons. The benefits of one intervention compared with another are presented using outcome measures; some may be specific to a limb or joint and some are more general health-related quality of life measures. Readers will be familiar with many of these outcome measures and will be able to judge the relative benefits of different interventions when measured using the same outcome tool; for example, different treatments for pain in the knee measured using a particular knee score. But, how should readers compare outcomes between different clinical areas using different outcome measures? This article explores the use of standardised effect sizes. Cite this article: Bone Joint J 2014;96-B:853–4


Bone & Joint Research
Vol. 7, Issue 1 | Pages 105 - 110
1 Jan 2018
Abar O Dharmar S Tang SY

Objectives. Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen cross-linking, which adversely affects bone quality and has been shown to play a major role in fracture risk. Thus, intervening in the formation and accumulation of AGEs may be a viable means of protecting bone quality. Methods. An in vitro model was used to examine the efficacy of two AGE-inhibitors, aminoguanidine (AG) and pyridoxamine (PM), on ageing human cortical bone. Mid-diaphyseal tibial cortical bone segments were obtained from female cadavers (n = 20, age range: 57 years to 97 years) and randomly subjected to one of four treatments: control; glucose only; glucose and AG; or glucose and PM. Following treatment, each specimen underwent mechanical testing under physiological conditions via reference point indentation, and AGEs were quantified by fluorescence. Results. Treatment with AG and PM showed a significant decrease in AGE content versus control groups, as well as a significant decrease in the change in indentation distance, a reliable parameter for analyzing bone strength, via two-way analysis of variance (ANOVA) (p < 0.05). Conclusions. The data suggest that AG and PM prevent AGE formation and subsequent biomechanical degradation in vitro. Modulation of AGEs may help to identify novel therapeutic targets to mitigate bone quality deterioration, especially deterioration due to ageing and in AGE-susceptible populations (e.g. diabetics). Cite this article: O. Abar, S. Dharmar, S. Y. Tang. The effect of aminoguanidine (AG) and pyridoxamine (PM) on ageing human cortical bone. Bone Joint Res 2018;7:105–110. DOI: 10.1302/2046-3758.71.BJR-2017-0135.R1


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 600 - 601
1 Apr 2021
Yapp LZ Walmsley PJ Moran M Clarke JV Simpson AHRW Scott CEH


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 228 - 232
1 Mar 2000
Tanaka H Nagata K Goto T Hoshiko H Inoue A

We assessed the unloading effect of the patellar tendon-bearing (PTB) cast in five healthy volunteers using a new system for analysis of dynamic plantar pressure. We devised a method to improve the unloading effect of the PTB cast, and tested this using the same system. Our findings showed that the conventional PTB cast only achieved unloading of 30% of the body-weight and that the part of the cast on the leg had a more important role in the unloading than that which was in contact with the patellar tendon. When the depth of the free space under the foot inside the PTB cast was 1, 2 and 3 cm, the unloading effect was 60%, 80% and 98%, respectively. The unloading effect of the conventional PTB cast was disappointing at only 30% of body-weight. It was improved by producing a space between the sole of the foot and the cast, and was adjustable by altering the depth of this space


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives. The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions. G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article: T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123–131. DOI: 10.1302/2046-3758.63.BJR-2016-0083


Objectives. Irrigation is the cornerstone of treating skeletal infection by eliminating pathogens in wounds. A previous study shows that irrigation with normal saline (0.9%) and ethylenediaminetetraacetic acid (EDTA) could improve the removal of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) compared with normal saline (NS) alone. However, it is still unclear whether EDTA solution is effective against infection with drug-resistant bacteria. Methods. We established three wound infection models (skin defect, bone-exposed, implant-exposed) by inoculating the wounds with a variety of representative drug-resistant bacteria including methicillin-resistant S. aureus (MRSA), extended spectrum beta-lactamase-producing E. coli (ESBL-EC), multidrug-resistant Pseudomonas aeruginosa (MRPA), vancomycin-resistant Enterococcus (VRE), multidrug-resistant Acinetobacter baumannii (MRAB), multidrug-resistant Enterobacter (MRE), and multidrug-resistant Proteus mirabilis (MRPM). Irrigation and debridement were repeated until the wound culture became negative. The operating times required to eliminate pathogens in wounds were compared through survival analysis. Results. Compared with other groups (NS, castile soap, benzalkonium chloride, and bacitracin), the EDTA group required fewer debridement and irrigation operations to achieve pathogen eradication in all three models of wound infection. Conclusion. Irrigation with EDTA solution was more effective than the other irrigation fluids used in the treatment of wound infections caused by drug-resistant pathogens. Cite this article: Z. Deng, F. Liu, C. Li. Therapeutic effect of ethylenediaminetetraacetic acid irrigation solution against wound infection with drug-resistant bacteria in a rat model: an animal study. Bone Joint Res 2019;8:189–198. DOI: 10.1302/2046-3758.85.BJR-2018-0280.R3


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1248 - 1255
1 Oct 2019
Pineda A Pabbruwe MB Kop AM Vlaskovsky P Hurworth M

Aims

The aim of this study was to conduct the largest low contact stress (LCS) retrieval study to elucidate the failure mechanisms of the Porocoat and Duofix femoral component. The latter design was voluntarily recalled by the manufacturer.

Materials and Methods

Uncemented LCS explants were divided into three groups: Duofix, Porocoat, and mixed. Demographics, polyethylene wear, tissue ingrowth, and metallurgical analyses were performed.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 453 - 460
1 Oct 2016
Ernstbrunner L Werthel J Hatta T Thoreson AR Resch H An K Moroder P

Objectives. The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo. Methods. Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius. Results. The experimental SR is comparable with the calculated SR (mean difference 10%, . sd. 8%; relative values). The experimental incongruence study observed almost no differences (2%, . sd. 2%). The calculated SR on the basis of the socket concavity radius is superior in predicting the experimental SR (mean difference 10%, . sd. 9%) compared with the calculated SR based on the plastic ball radius (mean difference 42%, . sd. 55%). Conclusion. The present biomechanical investigation confirmed the validity of the BSSR. Incongruence has no significant effect on the SR of a shoulder model. In the event of an incongruent system, the calculation of the BSSR on the basis of the glenoid concavity radius is recommended. Cite this article: L. Ernstbrunner, J-D. Werthel, T. Hatta, A. R. Thoreson, H. Resch, K-N. An, P. Moroder. Biomechanical analysis of the effect of congruence, depth and radius on the stability ratio of a simplistic ‘ball-and-socket’ joint model. Bone Joint Res 2016;5:453–460. DOI: 10.1302/2046-3758.510.BJR-2016-0078.R1


Bone & Joint Research
Vol. 2, Issue 6 | Pages 102 - 111
1 Jun 2013
Patel RA Wilson RF Patel PA Palmer RM

Objectives. To review the systemic impact of smoking on bone healing as evidenced within the orthopaedic literature. Methods. A protocol was established and studies were sourced from five electronic databases. Screening, data abstraction and quality assessment was conducted by two review authors. Prospective and retrospective clinical studies were included. The primary outcome measures were based on clinical and/or radiological indicators of bone healing. This review specifically focused on non-spinal orthopaedic studies. Results. Nine tibia studies and eight other orthopaedic studies were considered for systematic review. Of these 17 studies, 13 concluded that smoking negatively influenced bone healing. Conclusions. Smoking has a negative effect on bone healing, in terms of delayed union, nonunion and more complications


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results. BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm. 2. vs 6.55/cm. 2. vs 5.25/cm. 2. ). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion. BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 776 - 783
1 Jun 2009
Rajesparan K Biant LC Ahmad M Field RE

Tranexamic acid is a fibrinolytic inhibitor which reduces blood loss in total knee replacement. We examined the effect on blood loss of a standardised intravenous bolus dose of 1 g of tranexamic acid, given at the induction of anaesthesia in patients undergoing total hip replacement and tested the potential prothrombotic effect by undertaking routine venography. In all, 36 patients received 1 g of tranexamic acid, and 37 no tranexamic acid. Blood loss was measured directly per-operatively and indirectly post-operatively. Tranexamic acid reduced the early post-operative blood loss and total blood loss (p = 0.03 and p = 0.008, respectively) but not the intraoperative blood loss. The tranexamic acid group required fewer transfusions (p = 0.03) and had no increased incidence of deep-vein thrombosis. The reduction in early post-operative blood loss was more marked in women (p = 0.05), in whom this effect was dose-related (r = −0.793). Our study showed that the administration of a standardised pre-operative bolus of 1 g of tranexamic acid was cost-effective in reducing the blood loss and transfusion requirements after total hip replacement, especially in women


Bone & Joint Research
Vol. 4, Issue 6 | Pages 93 - 98
1 Jun 2015
Smith NA Achten J Parsons N Wright D Parkinson B Thompson P Hutchinson CE Spalding T Costa ML

Objectives. Subtotal or total meniscectomy in the medial or lateral compartment of the knee results in a high risk of future osteoarthritis. Meniscal allograft transplantation has been performed for over thirty years with the scientifically plausible hypothesis that it functions in a similar way to a native meniscus. It is thought that a meniscal allograft transplant has a chondroprotective effect, reducing symptoms and the long-term risk of osteoarthritis. However, this hypothesis has never been tested in a high-quality study on human participants. This study aims to address this shortfall by performing a pilot randomised controlled trial within the context of a comprehensive cohort study design. Methods. Patients will be randomised to receive either meniscal transplant or a non-operative, personalised knee therapy program. MRIs will be performed every four months for one year. The primary endpoint is the mean change in cartilage volume in the weight-bearing area of the knee at one year post intervention. Secondary outcome measures include the mean change in cartilage thickness, T2 maps, patient-reported outcome measures, health economics assessment and complications. Results. This study is expected to report its findings in 2016. Cite this article: Bone Joint Res 2015;4:93–8