Advertisement for orthosearch.org.uk
Results 41 - 60 of 603
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 619 - 619
1 May 2002
RODRIGUEZ JA


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 368 - 369
1 Mar 1999
NELISSEN RGHH VALSTAR ER ROZING PM


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 1 | Pages 9 - 17
1 Jan 1992
Engh G Dwyer K Hanes C

We examined 86 polyethylene inserts, retrieved from total and unicompartmental knee prostheses after an average of 39.5 months in situ, grading them from 0 to 3 for seven modes of polyethylene degradation. Severe wear, with delamination or deformation, was observed in 51% of the implants, and was associated with time in situ, lack of congruency, thin polyethylene, third-body wear debris, and heat-pressed polyethylene. Significant under-surface cold flow was identified in some areas of unsupported polyethylene, and was associated with delamination in the load-bearing areas of thin inserts above screw holes in the underlying metal tray. We recommend the use of thicker polyethylene inserts, particularly in young, active patients and in designs with screw holes in the tibial baseplate. Thin polyethylene inserts which are at risk for accelerated wear and premature failure should be monitored radiographically at annual intervals.


Aims. The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness. Methods. A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology. Results. The AP group had a mean KSS-Knee of 83.4 (standard deviation (SD) 19.2) and the MB group a mean of 84.9 (SD 18.2; p = 0.631), while mean KSS-Function was 75.4 (SD 15.3) and 73.2 (SD 16.2 p = 0.472), respectively. The mental (44.3 vs 45.1; p = 0.464) and physical (44.8 vs 44.9; p = 0.893) dimensions of the SF-12 and ROM (97.9° vs 99.7°; p = 0.444) were not different between the groups. Implant survivorship at five years were 99.2% and 97.7% (p = 0.321). The AP group had a greater SF-6D gain of 0.145 compared to the MB group, with an associated cost saving of £406, which resulted in a negative ICER of -£406/0.145 = -£2,800. Therefore, the AP tibial component was dominant, being a more effective and less expensive intervention. Conclusion. There were no differences in functional outcomes or survivorship at five years between AP and MB tibial components in patients aged 70 years and older, however the AP component was shown to be more cost-effective. In the UK, only 1.4% of all total knee arthroplasties use an AP component; even a modest increase in usage nationally could lead to significant financial savings. Cite this article: Bone Jt Open 2022;3(12):969–976


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims. One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. Methods. A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD). Results. The BMD showed no statistically significant difference between both groups. Group A showed for all load levels significantly higher maximum relative motion compared to group S for 20° and 50° flexion. Group S improved the maximum failure load significantly compared to group A without additional cement pockets. Group S showed a significantly increased cement adhesion compared to group A. The cement penetration and cement mantle defect analysis showed no significant differences between both groups. Conclusion. From a biomechanical point of view, the additional cement pockets of the component have improved the fixation performance of the implant. Cite this article: Bone Joint Res 2022;11(4):229–238


Bone & Joint Open
Vol. 3, Issue 6 | Pages 495 - 501
14 Jun 2022
Keohane D Sheridan GA Masterson E

Aims. Total knee arthroplasty (TKA) is a common and safe orthopaedic procedure. Zimmer Biomet's NexGen is the second most popular brand of implant used in the UK. The primary cause of revision after the first year is aseptic loosening. We present our experience of using this implant, with significant concerns around its performance with regards early aseptic loosening of the tibial component. Methods. A retrospective, single-surgeon review was carried out of all of the NexGen Legacy Posterior Stabilized (LPS) TKAs performed in this institute. The specific model used for the index procedures was the NexGen Complete Knee System (Legacy Knee-Posterior Stabilized LPS-Flex Articular Surface, LPS-Flex Femoral Component Option, and Stemmed Nonaugmentable Tibial Component Option). Results. Between 2013 and 2016, 352 NexGen TKAs were carried out on 331 patients. A total of 62 TKAs have been revised to date, giving an all-cause revision rate of 17.6% at a minimum of five years. Three of these revisions were due to infection. Overall, 59 of the revisions were performed for aseptic loosening (16.7%) of the tibial component. The tibial component was removed intraoperatively without instrumentation due to significant tibial debonding between the implant-cement interface. Conclusion. While overall, we believe that early aseptic loosening is multi-factorial in nature, the significantly high aseptic revision rate, as seen by an experienced fellowship-trained arthroplasty surgeon, has led us to believe that there is a fundamental issue with this NexGen implant design. Continued implant surveillance and rigorous review across all regions using this particular implant is warranted based on the concerning findings described here. Cite this article: Bone Jt Open 2022;3(6):495–501


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 875 - 883
1 Jul 2022
Mills K Wymenga AB van Hellemondt GG Heesterbeek PJC

Aims. Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or press-fit (hybrid) fixation. The aim of this study was to compare the long-term stability of rTKA with cemented and press-fitted stems, using radiostereometric analysis (RSA). Methods. This is a follow-up of a randomized controlled trial, initially involving 32 patients, of whom 19 (nine cemented, ten hybrid) were available for follow-up ten years postoperatively, when further RSA measurements were made. Micromotion of the femoral and tibial components was assessed using model-based RSA software (RSAcore). The clinical outcome was evaluated using the Knee Society Score (KSS), the Knee injury and Osteoarthritis Outcome Score (KOOS), and visual analogue scale (pain and satisfaction). Results. The median total femoral translation and rotation at ten years were 0.39 mm (interquartile range (IQR) 0.20 to 0.54) and 0.59° (IQR 0.46° to 0.73°) for the cemented group and 0.70 mm (IQR 0.15 to 0.77) and 0.78° (IQR 0.47° to 1.43°) for the hybrid group. For the tibial components this was 0.38 mm (IQR 0.33 to 0.85) and 0.98° (IQR 0.38° to 1.34°) for the cemented group and 0.42 mm (IQR 0.30 to 0.52) and 0.72° (IQR 0.62° to 0.82°) for the hybrid group. None of these values were significantly different between the two groups and there were no significant differences between the clinical scores in the two groups at this time. There was only one re-revision, in the hybrid group, for infection and not for aseptic loosening. Conclusion. These results show good long-term fixation with no difference in micromotion and clinical outcome between fully cemented and hybrid fixation in rTKA, which builds on earlier short- to mid-term results. The patients all had type I or II osseous defects, which may in part explain the good results. Cite this article: Bone Joint J 2022;104-B(7):875–883


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1168 - 1176
1 Nov 2023
Yüksel Y Koster LA Kaptein BL Nelissen RGHH den Hollander P

Aims. Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes. Methods. A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively. Results. At five-year follow-up, RSA data from 61 patients were available and the mean maximum total point motion (MTPM) of the femoral components were: ATTUNE: 0.96 mm (95% confidence interval (CI) 0.79 to 1.14) and PFC-Sigma 1.37 mm (95% CI 1.18 to 1.59) (p < 0.001). The PFC-Sigma femoral component migrated more in the first postoperative year, but stabilized thereafter. MPTM of the tibial components were comparable at five-year follow-up: ATTUNE 1.12 mm (95% CI 0.95 to 1.31) and PFC-Sigma 1.25 mm (95% CI 1.07 to 1.44) (p = 0.438). RLL at the medial tibial implant-cement interface remained more prevalent for the ATTUNE at five-year follow-up compared to the PFC-Sigma (20% vs 3%). RLL did not progress over time, and varied between patients at different timepoints for both TKA systems. Clinical outcomes and PROMs improved compared with preoperative scores, and were not different between groups. Conclusion. MTPM migration at five-year follow-up of the femoral and tibial component of the ATTUNE were similar and as low as that of the PFC-Sigma. MTPM migration of both knee implants did not significantly change from one year post-surgery, indicating stable fixation. Long-term ATTUNE performance may be expected to be comparable to the clinically well-performing PFC-Sigma. We have not found evidence of increased tibial component migration as measured by RSA to support concerns about cement debonding and a higher risk of aseptic loosening with the ATTUNE TKA. Cite this article: Bone Joint J 2023;105-B(11):1168–1176


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 148 - 157
1 Feb 2023
Koster LA Rassir R Kaptein BL Sierevelt IN Schager M Nelissen RGHH Nolte PA

Aims. The primary aim of this study was to compare the migration of the femoral and tibial components of the cementless rotating platform Attune and Low Contact Stress (LCS) total knee arthroplasty (TKA) designs, two years postoperatively, using radiostereometric analysis (RSA) in order to assess the risk of the development of aseptic loosening. A secondary aim was to compare clinical and patient-reported outcome measures (PROMs) between the designs. Methods. A total of 61 TKAs were analyzed in this randomized clinical RSA trial. RSA examinations were performed one day and three, six, 12, and 24 months postoperatively. The maximal total point motion (MPTM), translations, and rotations of the components were analyzed. PROMs and clinical data were collected preoperatively and at six weeks and three, six, 12, and 24 months postoperatively. Linear mixed effect modelling was used for statistical analyses. Results. The mean MTPM two years postoperatively (95% confidence interval (CI)) of the Attune femoral component (0.92 mm (0.75 to 1.11)) differed significantly from that of the LCS TKA (1.72 mm (1.47 to 2.00), p < 0.001). The Attune femoral component subsided, tilted (anteroposteriorly), and rotated (internal-external) significantly less. The mean tibial MTPM two years postoperatively did not differ significantly, being 1.11 mm (0.94 to 1.30) and 1.17 mm (0.99 to 1.36, p = 0.447) for the Attune and LCS components, respectively. The rate of migration in the second postoperative year was negligible for the femoral and tibial components of both designs. The mean pain-at-rest (numerical rating scale (NRS)-rest) in the Attune group was significantly less compared with that in the LCS group during the entire follow-up period. At three months postoperatively, the Knee injury and Osteoarthritis Outcome Physical Function Shortform score, the Oxford Knee Score, and the NRS-activity scores were significantly better in the Attune group. Conclusion. The mean MTPM of the femoral components of the cementless rotating platform Attune was significantly less compared with that of the LCS design. This was reflected mainly in significantly less subsidence, posterior tilting, and internal rotation. The mean tibial MTPMs were not significantly different. During the second postoperative year, the components of both designs stabilized and low risks for the development of aseptic loosening are expected. Cite this article: Bone Joint J 2023;105-B(2):148–157


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 137 - 144
1 Jun 2021
Lachiewicz PF Steele JR Wellman SS

Aims. To establish our early clinical results of a new total knee arthroplasty (TKA) tibial component introduced in 2013 and compare it to other designs in use at our hospital during the same period. Methods. This is a retrospective study of 166 (154 patients) consecutive cemented, fixed bearing, posterior-stabilized (PS) TKAs (ATTUNE) at one hospital performed by five surgeons. These were compared with a reference cohort of 511 knees (470 patients) of other designs (seven manufacturers) performed at the same hospital by the same surgeons. There were no significant differences in age, sex, BMI, or follow-up times between the two cohorts. The primary outcome was revision performed or pending. Results. In total, 19 (11.5%) ATTUNE study TKAs have been revised at a mean 30.3 months (SD 15), and loosening of the tibial component was seen in 17 of these (90%). Revision is pending in 12 (7%) knees. There was no difference between the 31 knees revised or with revision pending and the remaining 135 study knees in terms of patient characteristics, type of bone cement (p = 0.988), or individual surgeon (p = 0.550). In the reference cohort, there were significantly fewer knees revised (n = 13, 2.6%) and with revision pending (n = 8, 1.5%) (both p < 0.001), and only two had loosening of the tibial component as the reason for revision. Conclusion. This new TKA design had an unexpectedly high early rate of revision compared with our reference cohort of TKAs. Debonding of the tibial component was the most common reason for failure. Additional longer-term follow-up studies of this specific component and techniques for implantation are warranted. The version of the ATTUNE tibial component implanted in this study has undergone modifications by the manufacturer. Cite this article: Bone Joint J 2021;103-B(6 Supple A):137–144


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1158 - 1166
14 Sep 2020
Kaptein BL den Hollander P Thomassen B Fiocco M Nelissen RGHH

Aims. The primary objective of this study was to compare migration of the cemented ATTUNE fixed bearing cruciate retaining tibial component with the cemented Press-Fit Condylar (PFC)-sigma fixed bearing cruciate retaining tibial component. The secondary objectives included comparing clinical and radiological outcomes and Patient Reported Outcome Measures (PROMs). Methods. A single blinded randomized, non-inferiority study was conducted including 74 patients. Radiostereometry examinations were made after weight bearing, but before hospital discharge, and at three, six, 12, and 24 months postoperatively. PROMS were collected preoperatively and at three, six, 12, and 24 months postoperatively. Radiographs for measuring radiolucencies were collected at two weeks and two years postoperatively. Results. The overall migration (mean maximum total point motion (MPTM)) at two years was comparable: mean 1.13 mm (95% confidence interval (CI), 0.97 to 1.30) for the ATTUNE and 1.16 mm (95% CI, 0.99 to 1.35) for the PFC-sigma. At two years, the mean backward tilting was -0.43° (95% CI, -0.65 to -0.21) for the ATTUNE and 0.08° (95% CI -0.16 to 0.31), for the PFC-sigma. Overall migration between the first and second postoperative year was negligible for both components. The clinical outcomes and PROMs improved compared with preoperative scores and were not different between groups. Radiolucencies at the implant-cement interface were mainly seen below the medial baseplate: 17% in the ATTUNE and 3% in the PFC-sigma at two weeks, and at two years 42% and 9% respectively (p = 0.001). Conclusion. In the first two postoperative years the initial version of the ATTUNE tibial component was not inferior with respect to overall migration, although it showed relatively more backwards tilting and radiolucent lines at the implant-cement interface than the PFC-sigma. The version of the ATTUNE tibial component examined in this study has subsequently undergone modification by the manufacturer. Level of Evidence: 1 (randomized controlled clinical trial). Cite this article: Bone Joint J 2020;102-B(9):1158–1166


Aims. The aim of this study was to compare the migration of the femoral component, five years postoperatively, between patients with a highly cross-linked polyethylene (HXLPE) insert and those with a conventional polyethylene (PE) insert in an uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary aims included clinical outcomes and patient-reported outcome measures (PROMs). We have previously reported the migration and outcome of the tibial components in these patients. Methods. A double-blinded randomized controlled trial was conducted including 96 TKAs. The migration of the femoral component was measured with radiostereometry (RSA) at three and six months and one, two, and five years postoperatively. PROMs were collected preoperatively and at all periods of follow-up. Results. There was no clinically relevant difference in terms of migration of the femoral component or PROMs between the HXLPE and PE groups. The mean difference in migration (maximum total point motion), five years postopeatively, was 0.04 mm (95% CI -0.06 to 0.16) in favour of the PE group. Conclusion. There was no clinically relevant difference in migration of the femoral component, for up to five years between the two groups. These findings will help to establish a benchmark for future studies on migration of femoral components in TKA. Cite this article: Bone Joint J 2024;106-B(8):826–833


Bone & Joint 360
Vol. 12, Issue 2 | Pages 16 - 19
1 Apr 2023

The April 2023 Knee Roundup. 360. looks at: Does bariatric surgery reduce complications after total knee arthroplasty?; Mid-flexion stability in total knee arthroplasties implanted with kinematic alignment: posterior-stabilized versus medial-stabilized implants; Inflammatory response in robotic-arm-assisted versus conventional jig-based total knee arthroplasty; Journey II bicruciate stabilized (JII-BCS) and GENESIS II total knee arthroplasty: the CAPAbility, blinded, randomized controlled trial; Lifetime risk of revision and patient factors; Platelet-rich plasma use for hip and knee osteoarthritis in the USA; Where have the knee revisions gone?; Tibial component rotation in total knee arthroplasty: CT-based study of 1,351 tibiae


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 221 - 226
1 Mar 2023
Wilton T Skinner JA Haddad FS

Recent publications have drawn attention to the fact that some brands of joint replacement may contain variants which perform significantly worse (or better) than their ‘siblings’. As a result, the National Joint Registry has performed much more detailed analysis on the larger families of knee arthroplasties in order to identify exactly where these differences may be present and may hitherto have remained hidden. The analysis of the Nexgen knee arthroplasty brand identified that some posterior-stabilized combinations have particularly high revision rates for aseptic loosening of the tibia, and consequently a medical device recall has been issued for the Nexgen ‘option’ tibial component which was implicated. More elaborate signal detection is required in order to identify such variation in results in a routine fashion if patients are to be protected from such variation in outcomes between closely related implant types. Cite this article: Bone Joint J 2023;105-B(3):221–226


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


Bone & Joint Open
Vol. 5, Issue 4 | Pages 277 - 285
8 Apr 2024
Khetan V Baxter I Hampton M Spencer A Anderson A

Aims. The mean age of patients undergoing total knee arthroplasty (TKA) has reduced with time. Younger patients have increased expectations following TKA. Aseptic loosening of the tibial component is the most common cause of failure of TKA in the UK. Interest in cementless TKA has re-emerged due to its encouraging results in the younger patient population. We review a large series of tantalum trabecular metal cementless implants in patients who are at the highest risk of revision surgery. Methods. A total of 454 consecutive patients who underwent cementless TKA between August 2004 and December 2021 were reviewed. The mean follow-up was ten years. Plain radiographs were analyzed for radiolucent lines. Patients who underwent revision TKA were recorded, and the cause for revision was determined. Data from the National Joint Registry for England, Wales, Northern Island, the Isle of Man and the States of Guernsey (NJR) were compared with our series. Results. No patients in our series had evidence of radiolucent lines on their latest radiological assessment. Only eight patients out of 454 required revision arthroplasty, and none of these revisions were indicated for aseptic loosening of the tibial baseplate. When compared to data from the NJR annual report, Kaplan-Meier estimates from our series (2.94 (95% confidence interval (CI) 1.24 to 5.87)) show a significant reduction in cumulative estimates of revision compared to all cemented (4.82 (95% CI 4.69 to 4.96)) or cementless TKA (5.65 (95% CI 5.23 to 6.10)). Our data (2.94 (95% CI 1.24 to 5.87)) also show lower cumulative revision rates compared to the most popular implant (PFC Sigma Cemented Knee implant fixation, 4.03 (95% CI 3.75 to 4.33)). The prosthesis time revision rate (PTIR) estimates for our series (2.07 (95% CI 0.95 to 3.83)) were lower than those of cemented cases (4.53 (95% CI 4.49 to 4.57)) from NJR. Conclusion. The NexGen trabecular (tantalum) cementless implant has lower revision rates in our series compared to all cemented implants and other types of cementless implants, and its use in younger patients should be encouraged. Cite this article: Bone Jt Open 2024;5(4):277–285


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 635 - 640
1 Jun 2023
Karczewski D Siljander MP Larson DR Taunton MJ Lewallen DG Abdel MP

Aims. Knowledge on total knee arthroplasties (TKAs) in patients with a history of poliomyelitis is limited. This study compared implant survivorship and clinical outcomes among affected and unaffected limbs in patients with sequelae of poliomyelitis undergoing TKAs. Methods. A retrospective review of our total joint registry identified 94 patients with post-polio syndrome undergoing 116 primary TKAs between January 2000 and December 2019. The mean age was 70 years (33 to 86) with 56% males (n = 65) and a mean BMI of 31 kg/m. 2. (18 to 49). Rotating hinge TKAs were used in 14 of 63 affected limbs (22%), but not in any of the 53 unaffected limbs. Kaplan-Meier survivorship analyses were completed. The mean follow-up was eight years (2 to 19). Results. The ten-year survivorship free from revision was 91% (95% confidence interval (CI) 81 to 100) in affected and 84% (95% CI 68 to 100) in unaffected limbs. There were six revisions in affected limbs: three for periprosthetic femoral fractures and one each for periprosthetic joint infection (PJI), patellar clunk syndrome, and instability. Unaffected limbs were revised in four cases: two for instability and one each for PJI and tibial component loosening. The ten-year survivorship free from any reoperation was 86% (95% CI 75 to 97) and 80% (95% CI 64 to 99) in affected and unaffected limbs, respectively. There were three additional reoperations among affected and two in unaffected limbs. There were 12 nonoperative complications, including four periprosthetic fractures. Arthrofibrosis occurred in five affected (8%) and two unaffected limbs (4%). Postoperative range of motion decreased with 31% achieving less than 90° knee flexion by five years. Conclusion. TKAs in post-polio patients are complex cases associated with instability, and one in four require constraint on the affected side. Periprosthetic fracture was the main mode of failure. Arthrofibrosis rates were high and twice as frequent in affected limbs. Cite this article: Bone Joint J 2023;105-B(6):635–640


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1405 - 1413
1 Aug 2021
Ogura K Fujiwara T Morris CD Boland PJ Healey JH

Aims. Rotating-hinge knee prostheses are commonly used to reconstruct the distal femur after resection of a tumour, despite the projected long-term burden of reoperation due to complications. Few studies have examined the factors that influence their failure and none, to our knowledge, have used competing risk models to do so. The purpose of this study was to determine the risk factors for failure of a rotating-hinge knee distal femoral arthroplasty using the Fine-Gray competing risk model. Methods. We retrospectively reviewed 209 consecutive patients who, between 1991 and 2016, had undergone resection of the distal femur for tumour and reconstruction using a rotating-hinge knee prosthesis. The study endpoint was failure of the prosthesis, defined as removal of the femoral component, the tibial component, or the bone-implant fixation; major revision (exchange of the femoral component, tibial component, or the bone-implant fixation); or amputation. Results. Multivariate Fine-Gray regression analyses revealed different hazards for each Henderson failure mode: percentage of femoral resection (p = 0.001) and extent of quadriceps muscle resection (p = 0.005) for overall prosthetic failure; extent of quadriceps muscle resection (p = 0.002) and fixation of femoral component (p = 0.011) for type 2 failure (aseptic loosening); age (p = 0.009) and percentage of femoral resection (p = 0.019) for type 3 failure (mechanical failure); and type of joint resection (p = 0.037) for type 4 (infection) were independent predictors. A bone stem ratio of > 2.5 reliably predicted aseptic loosening. Conclusion. We identified independent risk factors for overall and cause-specific prosthetic failure after rotating-hinge knee distal femoral arthroplasty using a competing risk Fine-Gray model. A bone stem ratio > 2.5 reliably predicts aseptic loosening. An accurate knowledge of the risks of distal femoral arthroplasty after resection for tumour assists surgical planning and managing patient expectations. Cite this article: Bone Joint J 2021;103-B(8):1405–1413


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1467 - 1476
1 Nov 2017
van Hamersveld KT Marang-van de Mheen PJ Tsonaka R Valstar† ER Toksvig-Larsen S

Aims. The optimal method of tibial component fixation remains uncertain in total knee arthroplasty (TKA). Hydroxyapatite coatings have been applied to improve bone ingrowth in uncemented designs, but may only coat the directly accessible surface. As peri-apatite (PA) is solution deposited, this may increase the coverage of the implant surface and thereby fixation. We assessed the tibial component fixation of uncemented PA-coated TKAs versus cemented TKAs. Patients and Methods. Patients were randomised to PA-coated or cemented TKAs. In 60 patients (30 in each group), radiostereometric analysis of tibial component migration was evaluated as the primary outcome at baseline, three months post-operatively and at one, two and five years. A linear mixed-effects model was used to analyse the repeated measurements. Results. After five years of follow-up, one (cemented) component was revised due to ligament instability. Overall, uncemented PA-coated tibial components migrated significantly more (p = 0.003), with the mean maximum total point motion (MTPM) at five years being 0.62 mm (95% confidence intervals (CI) 0.49 to 0.76) for cemented tibial components and 0.97 mm (95% CI 0.81 to 1.15) for PA-coated tibial components in TKA. However, between three months and five years the cemented TKAs migrated significantly more (p = 0.02), displaying a MTPM of 0.27 mm (95% CI, 0.19 to 0.36) versus 0.13 mm (95% CI, 0.01 to 0.25) for PA-coated tibial components. One implant in each group was considered at risk for aseptic loosening due to continuous migration after five years of follow-up, albeit with different migration patterns for each group (i.e. higher initial migration but diminishing over time for the PA-coated component versus gradually increasing migration for the cemented component). Conclusion. The tibial components of PA-coated TKAs showed more overall migration compared with the tibial components of cemented TKAs. However, post hoc analysis showed that this difference was caused by higher migration of PA-coated components in the first three months, after which a stable migration pattern was observed. Clinically, there was no significant difference in outcome between the groups. Cite this article: Bone Joint J 2017;99-B:1467–76


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims. We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Methods. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement. Results. Gentamicin-loaded UHMWPE tibial components not only eradicated planktonic Staphylococcus aureus, but also prevented colonization of both femoral and tibial components. The proposed spacer possesses far superior mechanical and wear properties when compared with conventional bone cement spacers. Conclusion. The proposed gentamicin-eluting UHMWPE spacer can provide antibacterial efficacy comparable with currently used bone cement spacers, while overcoming their drawbacks. The novel spacer proposed here has the potential to drastically reduce complications associated with currently used bone cement spacers and substantially improve patients’ quality of life during the treatment. Cite this article: Bone Joint J 2020;102-B(6 Supple A):151–157