The effective capture of outcome measures in
the healthcare setting can be traced back to Florence Nightingale’s
investigation of the in-patient mortality of soldiers wounded in
the Crimean war in the 1850s. Only relatively recently has the formalised collection of outcomes
data into Registries been recognised as valuable in itself. With the advent of surgeon league tables and a move towards value
based health care, individuals are being driven to collect, store
and interpret data. Following the success of the National Joint Registry, the British
Association of Spine Surgeons instituted the British Spine Registry.
Since its launch in 2012, over 650 users representing the whole
surgical team have registered and during this time, more than 27 000
patients have been entered onto the database. There has been significant publicity regarding the collection
of outcome measures after surgery, including patient-reported scores.
Over 12 000 forms have been directly entered by patients themselves,
with many more entered by the surgical teams. Questions abound: who should have access to the data produced
by the Registry and how should they use it? How should the results
be reported and in what forum? Cite this article:
Recurrence of back or leg pain after discectomy
is a well-recognised problem with an incidence of up to 28%. Once conservative
measures have failed, several surgical options are available and
have been tried with varying degrees of success. In this study,
42 patients with recurrent symptoms after discectomy underwent less
invasive posterior lumbar interbody fusion (LI-PLIF). Clinical outcome
was measured using the Oswestry Disability Index (ODI), Short Form
36 (SF-36) questionnaires and visual analogue scales for back (VAS-BP)
and leg pain (VAS-LP). There was a statistically significant improvement
in all outcome measures (p <
0.001). The debate around which
procedure is the most effective for these patients remains controversial. Our results show that LI-PLIF is as effective as any other surgical
procedure. However, given that it is less invasive, we feel that
it should be considered as the preferred option.
Minimal clinically important differences (MCID)
in the scores of patient-reported outcome measures allow clinicians to
assess the outcome of intervention from the perspective of the patient.
There has been significant variation in their absolute values in
previous publications and a lack of consistency in their calculation. The purpose of this study was first, to establish whether these
values, following spinal surgery, vary depending on the surgical
intervention and their method of calculation and secondly, to assess
whether there is any correlation between the two external anchors
most frequently used to calculate the MCID. We carried out a retrospective analysis of prospectively gathered
data of adult patients who underwent elective spinal surgery between
1994 and 2009. A total of 244 patients were included. There were
125 men and 119 women with a mean age of 54 years (16 to 84); the
mean follow-up was 62 months (6 to 199) The MCID was calculated
using three previously published methods. Our results show that the value of the MCID varies considerably
with the operation and its method of calculation. There was good
correlation between the two external anchors. The global outcome
tool correlated significantly better. We conclude that consensus needs to be reached on the best method
of calculating the MCID. This then needs to be defined for each
spinal procedure. Using a blanket value for the MCID for all spinal
procedures should be avoided. Cite this article:
We present data relating to the Bryan disc arthroplasty for the treatment of cervical spondylosis in 46 patients. Patients with either radiculopathy or myelopathy had a cervical discectomy followed by implantation of a cervical disc prosthesis. Patients were reviewed at six weeks, six months and one year and assessment included three outcome measures, a visual analogue scale (VAS), the short form 36 (SF-36) and the neck disability index (NDI). The results were categorised according to a modification of Odom’s criteria. Radiological evaluation, by an independent radiologist, sought evidence of movement, stability and subsidence of the prosthesis. A highly significant difference was found for all three outcome measurements, comparing the pre-operative with the post-operative values: VAS (Z = 6.42, p <
0.0001), SF-36 (mental component) (Z = −5.02, p <
0.0001), SF-36 (physical component) (Z = −5.00, p <
0.0001) and NDI (Z = 7.03, p <
0.0001). The Bryan cervical disc prosthesis seems reliable and safe in the treatment of patients with cervical spondylosis.