Advertisement for orthosearch.org.uk
Results 41 - 60 of 1422
Results per page:
Bone & Joint Research
Vol. 11, Issue 5 | Pages 260 - 269
3 May 2022
Staats K Sosa BR Kuyl E Niu Y Suhardi V Turajane K Windhager R Greenblatt MB Ivashkiv L Bostrom MPG Yang X

Aims. To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results. iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean pull-out strength of the implant from 8.41 N (SD 8.15) in the PBS-control group to 21.49 N (SD 10.45) and 23.68 N (SD 8.99) in the immediate and delayed iPTH groups, respectively. Immediate and delayed iPTH increased mean peri-implant bone volume fraction (BV/TV) to 0.46 (SD 0.07) and 0.34 (SD 0.10), respectively, compared to PBS-control mean BV/TV of 0.23 (SD 0.03) (PBS-control vs immediate iPTH, p < 0.001; PBS-control vs delayed iPTH, p = 0.048; immediate iPTH vs delayed iPTH, p = 0.111). Conclusion. iPTH treatment mediated successful osseointegration and increased bone mechanical strength, despite initial implant instability. Clinically, this suggests that initially unstable implants may be osseointegrated with iPTH treatment. Cite this article: Bone Joint Res 2022;11(5):260–269


Bone & Joint Research
Vol. 11, Issue 4 | Pages 189 - 199
13 Apr 2022
Yang Y Li Y Pan Q Bai S Wang H Pan X Ling K Li G

Aims. Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. Methods. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes. Results. Gross and histological examinations showed that TTT technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In the TTT group, haematoxylin and eosin (H&E) staining demonstrated a better epidermis and dermis recovery, while immunohistochemical staining showed that TTT technique promoted local collagen deposition. The TTT technique also benefited to angiogenesis and immunomodulation. In the TTT group, blood flow in the wound area was higher than that of other groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the TTT group with double immune-labelling of CD31 and α-Smooth Muscle Actin (α-SMA). The number of M2 macrophages at the wound site in the TTT group was also increased. Conclusion. The TTT technique accelerated wound healing through enhanced angiogenesis and immunomodulation. Cite this article: Bone Joint Res 2022;11(4):189–199


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. Results. Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. Conclusion. This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies. Cite this article: Bone Joint Res 2023;12(1):58–71


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 145 - 149
1 Jun 2021
Crawford DA Passias BJ Adams JB Berend KR Lombardi AV

Aims. A limited number of investigations with conflicting results have described perivascular lymphocytic infiltration (PVLI) in the setting of total knee arthroplasty (TKA). The purpose of this study was to determine if PVLI found in TKAs at the time of aseptic revision surgery was associated with worse clinical outcomes and survivorship. Methods. A retrospective review was conducted on 617 patients who underwent aseptic TKA revision who had histological analysis for PVLI at the time of surgery. Clinical and radiological data were obtained pre- and postoperatively, six weeks postoperatively, and then every year thereafter. Results. Within this cohort, 118 patients (19.1%) were found to have PVLI on histological analysis. Re-revision was performed on 83 patients (13.4%) with no significant differences in all-cause or aseptic revisions between groups. A higher incidence of PVLI was noted in female patients (p = 0.037). There was no significant difference in improvement in the range of motion (p = 0.536), or improvement of KSC (p = 0.66), KSP (p = 0.61), or KSF (p = 0.3) clinical outcome scores between PVLI and no PVLI sub-groups. There was a higher incidence of a preoperative diagnosis of pain in the PVLI group compared with patients without PVLI (p = 0.002) present. Conclusion. PVLI found on large-scale histological analysis in TKAs at aseptic revision surgery was not associated with worse clinical outcomes or rates of re-revision. Cite this article: Bone Joint J 2021;103-B(6 Supple A):145–149


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 183 - 188
1 Jan 2022
van Sloten M Gómez-Junyent J Ferry T Rossi N Petersdorf S Lange J Corona P Araújo Abreu M Borens O Zlatian O Soundarrajan D Rajasekaran S Wouthuyzen-Bakker M

Aims. The aim of this study was to analyze the prevalence of culture-negative periprosthetic joint infections (PJIs) when adequate methods of culture are used, and to evaluate the outcome in patients who were treated with antibiotics for a culture-negative PJI compared with those in whom antibiotics were withheld. Methods. A multicentre observational study was undertaken: 1,553 acute and 1,556 chronic PJIs, diagnosed between 2013 and 2018, were retrospectively analyzed. Culture-negative PJIs were diagnosed according to the Muskuloskeletal Infection Society (MSIS), International Consensus Meeting (ICM), and European Bone and Joint Society (EBJIS) definitions. The primary outcome was recurrent infection, and the secondary outcome was removal of the prosthetic components for any indication, both during a follow-up period of two years. Results. None of the acute PJIs and 70 of the chronic PJIs (4.7%) were culture-negative; a total of 36 culture-negative PJIs (51%) were treated with antibiotics, particularly those with histological signs of infection. After two years of follow-up, no recurrent infections occurred in patients in whom antibiotics were withheld. The requirement for removal of the components for any indication during follow-up was not significantly different in those who received antibiotics compared with those in whom antibiotics were withheld (7.1% vs 2.9%; p = 0.431). Conclusion. When adequate methods of culture are used, the incidence of culture-negative PJIs is low. In patients with culture-negative PJI, antibiotic treatment can probably be withheld if there are no histological signs of infection. In all other patients, diagnostic efforts should be made to identify the causative microorganism by means of serology or molecular techniques. Cite this article: Bone Joint J 2022;104-B(1):183–188


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims. Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results. Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion. Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes. Cite this article: Bone Joint Res 2023;12(5):339–351


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims. To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. Methods. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm. 2. , 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens. Results. In the histopathological analysis, the macro-morphological grading scale showed a significant increase, while the histological score and cartilage repair scale of ESWT exhibited a significant decrease compared to OCD at the 8- and 12-week timepoints. At the 12-week follow-up, ESWT exhibited a significant improvement in the volume of damaged bone compared to OCD. Furthermore, immunohistochemistry analysis revealed a significant decrease in type I collagen and a significant increase in type II collagen within the newly formed hyaline cartilage following ESWT, compared to OCD. Finally, SRY-box transcription factor 9 (SOX9), aggrecan, and TGF-β, BMP-2, -3, -4, -5, and -7 were significantly higher in ESWT than in OCD at 12 weeks. Conclusion. ESWT promoted the effect of TGF-β/BMPs, thereby modulating the production of extracellular matrix proteins and transcription factor involved in the regeneration of articular cartilage and subchondral bone in an OCD rat model. Cite this article: Bone Joint Res 2024;13(7):342–352


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 302 - 308
1 Feb 2022
Dala-Ali B Donnan L Masterton G Briggs L Kauiers C O’Sullivan M Calder P Eastwood DM

Aims. Osteofibrous dysplasia (OFD) is a rare benign lesion predominantly affecting the tibia in children. Its potential link to adamantinoma has influenced management. This international case series reviews the presentation of OFD and management approaches to improve our understanding of OFD. Methods. A retrospective review at three paediatric tertiary centres identified 101 cases of tibial OFD in 99 patients. The clinical records, radiological images, and histology were analyzed. Results. Mean age at presentation was 13.5 years (SD 12.4), and mean follow-up was 5.65 years (SD 5.51). At latest review, 62 lesions (61.4%) were in skeletally mature patients. The most common site of the tibial lesion was the anterior (76 lesions, 75.2%) cortex (63 lesions, 62.4%) of the middle third (52 lesions, 51.5%). Pain, swelling, and fracture were common presentations. Overall, 41 lesions (40.6%) presented with radiological deformity (> 10°): apex anterior in 97.6%. A total of 41 lesions (40.6%) were treated conservatively. Anterior bowing < 10° at presentation was found to be related to successful conservative management of OFD (p = 0.013, multivariable logistic regression). Intralesional excision was performed in 43 lesions (42.6%) and a wide excision of the lesion in 19 (18.8%). A high complication rate and surgical burden was found in those that underwent a wide excision regardless of technique employed. There was progression/recurrence in nine lesions (8.9%) but statistical analysis found no predictive factors. No OFD lesion transformed to adamantinoma. Conclusion. This study confirms OFD to be a benign bone condition with low rates of local progression and without malignant transformation. It is important to distinguish OFD from adamantinoma by a histological diagnosis. Focus should be on angular deformity, monitored with full-length tibial radiographs. Surgery is indicated in symptomatic patients and predicted by the severity of the initial angular deformity. Surgery should focus more on the deformity rather than the lesion. Cite this article: Bone Joint J 2022;104-B(2):302–308


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 702 - 710
1 Jun 2023
Yeramosu T Ahmad W Bashir A Wait J Bassett J Domson G

Aims. The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients. Methods. Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset. Results. A total of 13,646 patients with STS from the SEER database were included, of whom 35.9% experienced five-year cancer-related mortality. The random forest model performed the best overall and identified tumour size as the most important variable when predicting mortality in patients with STS, followed by M stage, histological subtype, age, and surgical excision. Each variable was significant in logistic regression. External validation yielded an AUC of 0.752. Conclusion. This study identified clinically important variables associated with five-year cancer-related mortality in patients with limb and trunk STS, and developed a predictive model that demonstrated good accuracy and predictability. Orthopaedic oncologists may use these findings to further risk-stratify their patients and recommend an optimal course of treatment. Cite this article: Bone Joint J 2023;105-B(6):702–710


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 158 - 165
1 Feb 2023
Sigmund IK Yeghiazaryan L Luger M Windhager R Sulzbacher I McNally MA

Aims. The aim of this study was to evaluate the optimal deep tissue specimen sample number for histopathological analysis in the diagnosis of periprosthetic joint infection (PJI). Methods. In this retrospective diagnostic study, patients undergoing revision surgery after total hip or knee arthroplasty (n = 119) between January 2015 and July 2018 were included. Multiple specimens of the periprosthetic membrane and pseudocapsule were obtained for histopathological analysis at revision arthroplasty. Based on the Infectious Diseases Society of America (IDSA) 2013 criteria, the International Consensus Meeting (ICM) 2018 criteria, and the European Bone and Joint Infection Society (EBJIS) 2021 criteria, PJI was defined. Using a mixed effects logistic regression model, the sensitivity and specificity of the histological diagnosis were calculated. The optimal number of periprosthetic tissue specimens for histopathological analysis was determined by applying the Youden index. Results. Based on the EBJIS criteria (excluding histology), 46 (39%) patients were classified as infected. Four to six specimens showed the highest Youden index (four specimens: 0.631; five: 0.634; six: 0.632). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of five tissue specimens were 76.5% (95% confidence interval (CI) 67.6 to 81.4), 86.8% (95% CI 81.3 to 93.5), 66.0% (95% CI 53.2 to 78.7), and 84.3% (95% CI 79.4 to 89.3), respectively. The area under the curve (AUC) was calculated with 0.81 (as a function of the number of tissue specimens). Applying the ICM and IDSA criteria (excluding histology), 40 (34%) and 32 (27%) patients were categorized as septic. Three to five specimens had the highest Youden index (ICM 3: 0.648; 4: 0.651; 5: 0.649) (IDSA 3: 0.627; 4: 0.629; 5: 0.625). Conclusion. Three to six tissue specimens of the periprosthetic membrane and pseudocapsule should be collected at revision arthroplasty and analyzed by a pathologist experienced and skilled in interpreting periprosthetic tissue. Cite this article: Bone Joint J 2023;105-B(2):158–165


Bone & Joint Open
Vol. 5, Issue 4 | Pages 350 - 360
23 Apr 2024
Wang S Chen Z Wang K Li H Qu H Mou H Lin N Ye Z

Aims. Radiotherapy is a well-known local treatment for spinal metastases. However, in the presence of postoperative systemic therapy, the efficacy of radiotherapy on local control (LC) and overall survival (OS) in patients with spinal metastases remains unknown. This study aimed to evaluate the clinical outcomes of post-surgical radiotherapy for spinal metastatic non-small-cell lung cancer (NSCLC) patients, and to identify factors correlated with LC and OS. Methods. A retrospective, single-centre review was conducted of patients with spinal metastases from NSCLC who underwent surgery followed by systemic therapy at our institution from January 2018 to September 2022. Kaplan-Meier analysis and log-rank tests were used to compare the LC and OS between groups. Associated factors for LC and OS were assessed using Cox proportional hazards regression analysis. Results. Overall, 123 patients with 127 spinal metastases from NSCLC who underwent decompression surgery followed by postoperative systemic therapy were included. A total of 43 lesions were treated with stereotactic body radiotherapy (SBRT) after surgery and 84 lesions were not. Survival rate at one, two, and three years was 83.4%, 58.9%, and 48.2%, respectively, and LC rate was 87.8%, 78.8%, and 78.8%, respectively. Histological type was the only significant associated factor for both LC (p = 0.007) and OS (p < 0.001). Treatment with targeted therapy was significantly associated with longer survival (p = 0.039). The risk factors associated with worse survival were abnormal laboratory data (p = 0.021), lesions located in the thoracic spine (p = 0.047), and lumbar spine (p = 0.044). This study also revealed that postoperative radiotherapy had little effect in improving OS or LC. Conclusion. Tumour histological type was significantly associated with the prognosis in spinal NSCLC metastasis patients. In the presence of post-surgical systemic therapy, radiotherapy appeared to be less effective in improving LC, OS, or quality of life in spinal NSCLC metastasis patients. Cite this article: Bone Jt Open 2024;5(4):350–360


Aims. The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders. Methods. Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 10. 3. or 1 × 10. 6. colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 10. 3. or 1 × 10. 6. CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash. Results. The first part of the study showed that low-grade infection was more significant in 400 µm cylinders than cylinders with larger pore sizes (p < 0.05). The second part of the study showed that saline wash alone was ineffective in eradicating both low- and high-grade infections. Saline plus PVA-VAN/TOB-P eradicated the titanium cylinder-associated infections, as manifested by negative cultures of the washouts and supported by scanning electron microscopy and histology. Conclusion. Porous titanium cylinders were vulnerable to bacterial infection and biofilm formation that could not be treated by saline irrigation alone. Application of PVA-VAN/TOB-P directly into the surgical site alone or after saline wash represents a feasible approach for prevention and/or treatment of porous implant-related infections. Cite this article: Bone Joint Res 2024;13(11):622–631


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 808 - 814
1 Jul 2023
Gundavda MK Lazarides AL Burke ZDC Focaccia M Griffin AM Tsoi KM Ferguson PC Wunder JS

Aims. The preoperative grading of chondrosarcomas of bone that accurately predicts surgical management is difficult for surgeons, radiologists, and pathologists. There are often discrepancies in grade between the initial biopsy and the final histology. Recent advances in the use of imaging methods have shown promise in the ability to predict the final grade. The most important clinical distinction is between grade 1 chondrosarcomas, which are amenable to curettage, and resection-grade chondrosarcomas (grade 2 and 3) which require en bloc resection. The aim of this study was to evaluate the use of a Radiological Aggressiveness Score (RAS) to predict the grade of primary chondrosarcomas in long bones and thus to guide management. Methods. A total of 113 patients with a primary chondrosarcoma of a long bone presenting between January 2001 and December 2021 were identified on retrospective review of a single oncology centre’s prospectively collected database. The nine-parameter RAS included variables from radiographs and MRI scans. The best cut-off of parameters to predict the final grade of chondrosarcoma after resection was determined using a receiver operating characteristic curve (ROC), and this was correlated with the biopsy grade. Results. A RAS of ≥ four parameters was 97.9% sensitive and 90.5% specific in predicting resection-grade chondrosarcoma based on a ROC cut-off derived using the Youden index. Cronbach’s α of 0.897 was derived as the interclass correlation for scoring the lesions by four blinded reviewers who were surgeons. Concordance between resection-grade lesions predicted from the RAS and ROC cut-off with the final grade after resection was 96.46%. Concordance between the biopsy grade and the final grade was 63.8%. However, when the patients were analyzed based on surgical management, the initial biopsy was able to differentiate low-grade from resection-grade chondrosarcomas in 82.9% of biopsies. Conclusion. These findings suggest that the RAS is an accurate method for guiding the surgical management of patients with these tumours, particularly when the initial biopsy results are discordant with the clinical presentation. Cite this article: Bone Joint J 2023;105-B(7):808–814


Bone & Joint Research
Vol. 12, Issue 10 | Pages 615 - 623
3 Oct 2023
Helwa-Shalom O Saba F Spitzer E Hanhan S Goren K Markowitz SI Shilo D Khaimov N Gellman YN Deutsch D Blumenfeld A Nevo H Haze A

Aims. Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model. Methods. A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM. +. ) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM. +. using immunohistochemistry and immunofluorescence. Results. A total of 12 weeks after treatment, 0.5 μg/μl rHAM. +. brought about significant repair of the subchondral bone and cartilage. Increased expression of proteoglycan and type II collagen and decreased expression of type I collagen were revealed at the surface of the defect, and an elevated level of type X collagen at the newly developed tide mark region. Conversely, the control group showed osteoarthritic alterations. Recruitment of cells expressing the mesenchymal stem cell (MSC) markers CD105 and STRO-1, from adjacent bone marrow toward the OCI, was noted four days after treatment. Conclusion. We found that 0.5 μg/μl rHAM. +. induced in vivo healing of injured articular cartilage and subchondral bone in a rat model, preventing the destructive post-traumatic osteoarthritic changes seen in control OCIs, through paracrine recruitment of cells a few days after treatment. Cite this article: Bone Joint Res 2023;12(10):615–623


Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Aims. This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. Methods. In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation. Results. Micro-CT and histological evaluation showed that the bone microscopic parameters of femoral metaphysis trabecular bone and bone tissue around the titanium rod in the OVX + MD group demonstrated higher bone mineral density, bone volume fraction, trabecular number, connective density, trabecular thickness, and lower trabecular speculation (p = 0.004) than the OVX + MN group. Moreover, the biomechanical parameters of the OVX + MD group showed higher pull-out test and three-point bending test values, including fixation strength, interface stiffness, energy to failure, energy at break, ultimate load, and elastic modulus (p = 0.012) than the OVX + MN group. In addition, the bone metabolism index and oxidative stress indicators of the OVX + MD group show lower values of Type I collagen cross-linked C-telopeptide, procollagen type 1 N propeptide, and malondialdehyde (p = 0.013), and higher values of TAC and SOD (p = 0.002) compared with the OVX + MN group. Conclusion. The results of our study suggest that systemic administration with melatonin at 9 am may improve the initial osseointegration of titanium rods under osteoporotic conditions more effectively than administration at 9 pm. Cite this article: Bone Joint Res 2022;11(11):751–762


Bone & Joint Research
Vol. 12, Issue 3 | Pages 219 - 230
10 Mar 2023
Wang L Li S Xiao H Zhang T Liu Y Hu J Xu D Lu H

Aims. It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. Methods. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs. Results. Mechanical stimulation promoted macrophage M2 polarization in vivo and in vitro. The conditioned media from mechanically stimulated BMDMs (MS-CM) enhanced MSC chondrogenic differentiation, and mechanically stimulated BMDMs generated more TGF-β1. Further, neutralizing TGF-β1 in MS-CM can attenuate its pro-chondrogenic effect. In vivo, mechanical stimulation promoted TGF-β1 generation, MSC chondrogenesis, and T-B healing, which were abolished following macrophage depletion. Conclusion. Macrophages subjected to appropriate mechanical stimulation could polarize toward the M2 phenotype and secrete TGF-β1 to promote MSC chondrogenesis, which subsequently augments T-B healing. Cite this article: Bone Joint Res 2023;12(3):219–230


Bone & Joint Research
Vol. 12, Issue 10 | Pages 667 - 676
19 Oct 2023
Forteza-Genestra MA Antich-Rosselló M Ramis-Munar G Calvo J Gayà A Monjo M Ramis JM

Aims. Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 10. 9. particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results. Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion. In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine. Cite this article: Bone Joint Res 2023;12(10):667–676


Aims. To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Methods. Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 10. 6. ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed. Results. In the graft reseeded with ACL-derived cells, a large number of elongated cells that integrated into the matrix were evident at day 3 and day 7. However, in the graft reseeded with ADMSCs, only a small number of elongated cells were found integrated into the matrix. Immunofluorescence for Ki-67 and type I collagen confirmed the pronounced production of type I collagen by Ki-67-positive ACL-derived cells integrated into the ECM. A messenger RNA (mRNA) expression assay demonstrated significantly higher gene expression levels of types I (p = 0.013) and III (p = 0.050) collagen in the composites reseeded with ACL-derived cells than ADMSCs. Conclusion. ACL-derived cells, when reseeded to acellularized tendon graft, demonstrated earlier better survival and integration in the tendon ECM and resulted in higher gene expression levels of collagen, which may be essential to the normal ligamentization process compared to ADMSCs. Cite this article: Bone Joint Res 2022;11(11):777–786


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 696 - 701
1 Jun 2023
Kurisunkal V Morris G Kaneuchi Y Bleibleh S James S Botchu R Jeys L Parry MC

Aims. Intra-articular (IA) tumours around the knee are treated with extra-articular (EA) resection, which is associated with poor functional outcomes. We aim to evaluate the accuracy of MRI in predicting IA involvement around the knee. Methods. We identified 63 cases of high-grade sarcomas in or around the distal femur that underwent an EA resection from a prospectively maintained database (January 1996 to April 2020). Suspicion of IA disease was noted in 52 cases, six had IA pathological fracture, two had an effusion, two had prior surgical intervention (curettage/IA intervention), and one had an osseous metastasis in the proximal tibia. To ascertain validity, two musculoskeletal radiologists (R1, R2) reviewed the preoperative imaging (MRI) of 63 consecutive cases on two occasions six weeks apart. The radiological criteria for IA disease comprised evidence of tumour extension within the suprapatellar pouch, intercondylar notch, extension along medial/lateral retinaculum, and presence of IA fracture. The radiological predictions were then confirmed with the final histopathology of the resected specimens. Results. The resection histology revealed 23 cases (36.5%) showing IA disease involvement compared with 40 cases without (62%). The intraobserver variability of R1 was 0.85 (p < 0.001) compared to R2 with κ = 0.21 (p = 0.007). The interobserver variability was κ = 0.264 (p = 0.003). Knee effusion was found to be the most sensitive indicator of IA involvement, with a sensitivity of 91.3% but specificity of only 35%. However, when combined with a pathological fracture, this rose to 97.5% and 100% when disease was visible in Hoffa’s fat pad. Conclusion. MRI imaging can sometimes overestimate IA joint involvement and needs to be correlated with clinical signs. In the light of our findings, we would recommend EA resections when imaging shows effusion combined with either disease in Hoffa’s fat pad or retinaculum, or pathological fractures. Cite this article: Bone Joint J 2023;105-B(6):696–701