We report a 12- to 15-year implant survival assessment
of a prospective single-surgeon series of Birmingham Hip Resurfacings
(BHRs). The earliest 1000 consecutive BHRs including 288 women (335
hips) and 598 men (665 hips) of all ages and diagnoses with no exclusions
were prospectively followed-up with postal questionnaires, of whom
the first 402 BHRs (350 patients) also had clinical and radiological
review. Mean follow-up was 13.7 years (12.3 to 15.3). In total, 59 patients
(68 hips) died 0.7 to 12.6 years following surgery from unrelated
causes. There were 38 revisions, 0.1 to 13.9 years (median 8.7)
following operation, including 17 femoral failures (1.7%) and seven
each of infections, soft-tissue reactions and other causes. With
revision for any reason as the end-point Kaplan–Meier survival analysis
showed 97.4% (95% confidence interval (CI) 96.9 to 97.9) and 95.8%
(95% CI 95.1 to 96.5) survival at ten and 15 years, respectively.
Radiological assessment showed 11 (3.5%) femoral and 13 (4.1%) acetabular
radiolucencies which were not deemed failures and one radiological
femoral failure (0.3%). Our study shows that the performance of the BHR continues to
be good at 12- to 15-year follow-up. Men have better implant survival
(98.0%; 95% CI 97.4 to 98.6) at 15 years than women (91.5%; 95%
CI 89.8 to 93.2), and women <
60 years (90.5%; 95% CI 88.3 to
92.7) fare worse than others. Hip dysplasia and osteonecrosis are
risk factors for failure. Patients under 50 years with osteoarthritis
fare best (99.4%; 95% CI 98.8 to 100 survival at 15 years), with
no failures in men in this group. Cite this article:
Surface hip replacement (SHR) is generally used
in younger, active patients as an alternative conventional total
hip replacement in part because of the ability to preserve femoral
bone. This major benefit of surface replacement will only hold true
if revision procedures of SHRs are found to provide good clinical
results. A retrospective review of SHR revisions between 2007 and 2012
was presented, and the type of revision and aetiologies were recorded.
There were 55 SHR revisions, of which 27 were in women. At a mean
follow-up of 2.3 years (0.72 to 6.4), the mean post-operative Harris
hip score (HHS) was 94.8 (66 to 100). Overall 23 were revised for mechanical
reasons, nine for impingement, 13 for metallosis, nine for unexplained
pain and one for sepsis. Of the type of revision surgery performed,
14 were femoral-only revisions; four were acetabular-only revisions,
and 37 were complete revisions. We did not find that clinical scores were significantly different
between gender or different types of revisions. However, the mean
post-operative HHS was significantly lower in patients revised for
unexplained pain compared with patients revised for mechanical reasons
(86.9 (66 to 100) Based on the overall clinical results, we believe that revision
of SHR can have good or excellent results and warrants a continued
use of the procedure in selected patients. Close monitoring of these
patients facilitates early intervention, as we believe that tissue
damage may be related to the duration of an ongoing problem. There
should be a low threshold to revise a surface replacement if there
is component malposition, rising metal ion levels, or evidence of
soft-tissue abnormalities. Cite this article:
The purpose of this study was twofold: first,
to determine whether the five-year results of hip resurfacing arthroplasty
(HRA) in Canada justified the continued use of HRA; and second,
to identify whether greater refinement of patient selection was
warranted. This was a retrospective cohort study that involved a review
of 2773 HRAs performed between January 2001 and December 2008 at
11 Canadian centres. Cox’s proportional hazards models were used
to analyse the predictors of failure of HRA. Kaplan–Meier survival
analysis was performed to predict the cumulative survival rate at
five years. The factors analysed included age, gender, body mass
index, pre-operative hip pathology, surgeon’s experience, surgical
approach, implant sizes and implant types. The most common modes
of failure were also analysed. The 2773 HRAs were undertaken in 2450 patients: 2127 in men and
646 in women. The mean age at operation was 50.5 years ( The failure rates of HRA at five years justify the ongoing use
of this technique in men. Female gender is an independent predictor
of failure, and a higher failure rate at five years in women leads
the authors to recommend this technique only in exceptional circumstances
for women. Cite this article:
Despite the worldwide usage of the cemented Contemporary
acetabular component (Stryker), no published data are available
regarding its use in patients aged <
50 years. We undertook a
mid- to long-term follow-up study, including all consecutive patients
aged
<
50 years who underwent a primary total hip replacement using
the Contemporary acetabular component with the Exeter cemented stem
between January 1999 and January 2006. There were 152 hips in 126
patients, 61 men and 65 women, mean age at surgery 37.6 years (16
to 49 yrs). One patient was lost to follow-up. Mean clinical follow-up of all implants was 7.6 years (0.9 to
12.0). All clinical questionnaire scores, including Harris hip score,
Oxford hip score and several visual analogue scales, were found
to have improved. The eight year survivorship of all acetabular
components for the endpoints revision for any reason or revision
for aseptic loosening was 94.4% (95% confidence interval (CI) 89.2
to 97.2) and 96.4% (95% CI 91.6 to 98.5), respectively. Radiological follow-up
was complete for 146 implants. The eight year survival for the endpoint
radiological loosening was 93.1% (95% CI 86.2 to 96.6). Three surviving
implants were considered radiologically loose but were asymptomatic.
The presence of acetabular osteolysis (n = 17, 11.8%) and radiolucent
lines (n = 20, 13.9%) in the 144 surviving cups indicates a need
for continued observation in the second decade of follow-up in order
to observe their influence on long-term survival. The clinical and radiological data resulting in a ten-year survival
rate >
90% in young patients support the use of the Contemporary
acetabular component in this specific patient group. Cite this article:
The Articular Surface Replacement (ASR) hip resurfacing arthroplasty has a failure rate of 12.0% at five years, compared with 4.3% for the Birmingham Hip Resurfacing (BHR). We analysed 66 ASR and 64 BHR explanted metal-on-metal hip replacements with the aim of understanding their mechanisms of failure. We measured the linear wear rates of the acetabular and femoral components and analysed the clinical cause of failure, pre-revision blood metal ion levels and orientation of the acetabular component. There was no significant difference in metal ion levels (chromium, p = 0.82; cobalt, p = 0.40) or head wear rate (p = 0.14) between the two groups. The ASR had a significantly increased rate of wear of the acetabular component (p = 0.03) and a significantly increased occurrence of edge loading (p <
0.005), which can be attributed to differences in design between the ASR and BHR. The effects of differences in design on the
The dysplasia cup, which was devised as an adjunct to the Birmingham Hip Resurfacing system, has a hydroxyapatite-coated porous surface and two supplementary neutralisation screws to provide stable primary fixation, permit early weight-bearing, and allow incorporation of morcellised autograft without the need for structural bone grafting. A total of 110 consecutive dysplasia resurfacing arthroplasties in 103 patients (55 men and 48 women) performed between 1997 and 2000 was reviewed with a minimum follow-up of six years. The mean age at operation was 47.2 years (21 to 62) and 104 hips (94%) were Crowe grade II or III. During the mean follow-up of 7.8 years (6 to 9.6), three hips (2.7%) were converted to a total hip replacement at a mean of 3.9 years (2 months to 8.1 years), giving a cumulative survival of 95.2% at nine years (95% confidence interval 89 to 100). The revisions were due to a fracture of the femoral neck, a collapse of the femoral head and a deep infection. There was no aseptic loosening or osteolysis of the acetabular component associated with either of the revisions performed for failure of the femoral component. No patient is awaiting a revision. The median Oxford hip score in 98 patients with surviving hips at the final review was 13 and the 10th and the 90th percentiles were 12 and 23, respectively.
The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats. Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group. Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.
We inserted an electrode up the femoral neck into the femoral head of ten patients undergoing a metal-on-metal hip resurfacing arthroplasty through a posterior surgical approach and measured the oxygen concentration during the operation. In every patient the blood flow was compromised during surgery, but the extent varied. In three patients, the oxygen concentration was zero at the end of the procedure. The surgical approach caused a mean 60% drop (p <
0.005) in oxygen concentration while component insertion led to a further 20% drop (p <
0.04). The oxygen concentration did not improve significantly on wound closure. This study demonstrates that during hip resurfacing arthroplasty, patients experience some compromise to their femoral head blood supply and some have complete disruption.
We aimed to identify variables associated with clinical and radiological outcome following fractures of the acetabulum associated with posterior dislocation of the hip. Using a prospective database of 1076 such fractures, we identified 109 patients with this combined injury managed operatively within three weeks and followed up for two or more years. The patients had a mean age of 42 years (15 to 79), 78 (72%) were male, and 84 (77%) had been involved in motor vehicle accidents. Using multivariate analysis the quality of reduction of the fracture was identified as the only significant predictor of radiological grade, clinical function and the development of post-traumatic arthritis (p <
0.001). All patients lacking anatomical reduction developed arthritis whereas only 25.5% (24 patients) with an anatomical reduction did so (p = 0.05). The quality of the reduction of the fracture is the most important variable in forecasting the outcome for patients with this injury. The interval to reduction of the dislocation of the hip may be less important than previously described.
We have previously described the mid- to long-term
results of conventional simple varus intertrochanteric osteotomy
for osteonecrosis of the femoral head, showing that 19 of the 26
hips had good or excellent results. We extended the follow-up to
a mean of 18.1 years (10.5 to 26) including a total of 34 hips in
28 patients, with a mean age at surgery of 33 years (19 to 53).
There were 18 men and ten women and 25 hips (74%) had a satisfactory
result with a Harris hip score ≥ 80. In all, six hips needed total
hip replacement (THR) or hemiarthroplasty. The collapse of the femoral
head or narrowing of the joint space was found to have progressed
in nine hips (26%). Leg shortening after osteotomy was a mean of
19 mm (8 to 36). With conversion to THR or hemiarthroplasty as the
endpoint, the ten-year survival rate was 88.2% (95% confidence interval
(CI) 82.7 to 93.7) and the 20-year survival rate was 79.7% (95%
CI 72.1 to 87.3); four hips were converted at ten years and other
two hips were converted at 20 years. Shortening of the leg after osteotomy remains a concern; however,
the conventional varus half-wedge osteotomy provides favourable
long-term results in hips with less than two-thirds of the medial
part of the femoral head affected by necrotic bone and with normal
bone superolaterally.
We present the early clinical and radiological results of Articular Surface Replacement (ASR) resurfacings in 214 hips (192 patients) with a mean follow-up of 43 months (30 to 57). The mean age of the patients was 56 years (28 to 74) and 85 hips (40%) were in 78 women. The mean Harris hip score improved from 52 (11 to 81) to 95 (27 to 100) at two years and the mean University of California, Los Angeles activity score from 3.9 (1 to 10) to 7.4 (2 to 10) in the same period. Narrowing of the neck (to a maximum of 9%) was noted in 124 of 209 hips (60%). There were 12 revisions (5.6%) involving four (1.9%) early fractures of the femoral neck and two (0.9%) episodes of collapse of the femoral head secondary to avascular necrosis. Six patients (2.8%) had failure related to metal wear debris. The overall survival for our series was 93% (95% confidence interval 80 to 98) and 89% (95% confidence interval 82 to 96) for hips with acetabular components smaller than 56 mm in diameter. The ASR implant has a lower diametrical clearance and a subhemispherical acetabular component when compared with other more frequently implanted metal-on-metal hip resurfacings. These changes may contribute to the higher failure rate than in other series, compared with other designs. Given our poor results with the small components we are no longer implanting the smaller size.
The deformity index is a new radiological measurement of the degree of deformity of the femoral head in unilateral Perthes’ disease. Its values represent a continuous outcome measure of deformity incorporating changes in femoral epiphyseal height and width compared with the unaffected side. The sphericity of the femoral head in 30 radiographs (ten normal and 20 from patients with Perthes’ disease) were rated blindly as normal, mild, moderate or severe by three observers. Further blinded measurements of the deformity index were made on two further occasions with intervals of one month. There was good agreement between the deformity index score and the subjective grading of deformity. Intra- and interobserver agreement for the deformity index was high. The intraobserver intraclass correlation coefficient for each observer was 0.98, 0.99 and 0.97, respectively, while the interobserver intraclass correlation coefficient was 0.98 for the first and 0.97 for the second set of calculations. We also reviewed retrospectively 96 radiographs of children with Perthes’ disease, who were part of a multicentre trial which followed them to skeletal maturity. We found that the deformity index at two years correlated well with the Stulberg grading at skeletal maturity. A deformity index value above 0.3 was associated with the development of an aspherical femoral head. Using a deformity index value of 0.3 to divide groups for risk gives a sensitivity of 80% and specificity of 81% for predicting a Stulberg grade of III or IV. We conclude that the deformity index at two years is a valid and reliable radiological outcome measure in unilateral Perthes’ disease.